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Abstract 

In this paper, we establish some approximate fixed point theorems in the 

setting of b-metric space generalizing some of the recent results reported in the 

literature. Further, we study summable almost stability of iterative scheme.  
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1. INTRODUCTION AND PRELIMINARIES 

Let :T X X  and * .x X  Then, *x  is an   fixed point or an approximate fixed 

point of T if 
* *( , ) ,    >0.d x Tx    

For a given , we denote the set of approximate fixed points of T by ( ),F T  and it is 

given by  

* * *( ) { , ( , ) }.F T x X d x Tx     

In many practical situations, we may need an approximate solution of the problem or 

it might not be possible to get an exact fixed point of a map under consideration due 

to certain strong restrictions on the map or on the space. An approximate solution 
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plays an important role in such problems. Fixed point and approximate fixed points 

have been proved to be of prime importance in various areas such as mathematical 

economics, game theory, dynamic programming, nonlinear analysis and several other 

areas of applicable analysis. Cromme and Diener [9] generalized Brouwer’s fixed 

point theorem to a discontinuous map and found approximate fixed points of the 

maps. Hou and Chen [14] extended their results to set valued maps and Espinola and 

Kirk [11] obtained interesting results in product spaces.Tijs et al. [30] established 

approximate fixed point theorems by reducing the strictness on the maps in metric 

space. He replaced the compactness conditions used in the Brouwer, Kakutani 

theorems [7-8] by boundedness conditions in finite dimensional spaces and also 

dropped the completeness of the metric space in Banach’s contraction theorem [2]. 

Recently Berinde [6] obtained approximate fixed points for operators satisfying 

Kannan, Chatterjea and Zamfirescu type of conditions on metric spaces. In recent 

years, several authors studied approximate fixed point theory in different settings (see 

[3, 17] and the references therein). 

There are plenty of iterative schemes available in literature for finding the desired 

solution of the problems formulated as fixed point equations. Usually, Picard iteration 

is used for strict contractive type operator and Krasnoselskij iteration for non-

expansive or pseudo-contractive operators. Various other schemes such as Mann, 

Ishikawa etc are also used in the literature under different situations. It is very 

essential to see if these methods are numerically stable or not. Harder and Hicks [12-

13] defined the stability for fixed point iterations.  

Let ( , )X d  be a metric space, :T X X  and 0 .x X  Assume that the iteration 

procedure  

1                        ( , ),    0,1,2,...,                                               (1.1)n nx f T x n    

where  f  is some function, converges to a fixed point p of T. Let 0{ }n ny 

  be an 

arbitrary sequence in X and 0{ }n n 

  be defined by 1( , ( , )),  =0,1,2,...n n nd y f T y n 

The fixed point iteration is said to be T-stable or stable with respect to T if and only if  

                         lim 0 lim .                                                     (1.2)n nn n
y p

 
    

 This concept of stability has been widely studied by various authors for different 

nonlinear operators for different metric spaces (see [15, 19, 24-28]). Osilike [20-22] 

studied the stability of Ishikawa iteration for pseudo contractive operators and 

introduced a weaker concept of stability. The fixed point iteration is said to be almost 

T-stable or almost stable with respect to T if and only if  



Approximate Fixed Points and Summable Almost Stability 6031 

 
0

                       lim .                                                       (1.3)n nnn
y p






    

Berinde [4] defined almost stability in much weaker condition and established some 

summably almost stable fixed point procedures with respect to various contractive 

operator. The fixed point iteration is said to be summably almost T-stable with respect 

to T if and only if  

0 0

                        ( , ) .                                          (1.4)n n
n n

d y p
 

 

      

It is remarked that if an iteration procedure is not T-stable then it is not almost   

T-stable also and hence, not summably almost T-stable but converse may not be true, 

see Example 1.1 below (also see [Ex.1, 4]). 

Example 1.1. Let .X R  Define :T X X  where 
3

xTx   and ( , )X d  is a metric 

space with usual metric. Then to show that iteration procedure 1 ,  0,1,2,...n nx Tx n  

is neither T-stable nor almost T-stable but summable almost T-stable. 

Solution. Let { } { }ny R  be given by ,   0.
1

n
ny n

n
 


 Then, 

1

1

( , )

   

1
   

2 3(1 )

1
   .

(1 )(2 )

n n n

n n

y f T y

y Ty

n n
n n

n n

 



 

 


 

 


 

 

(i) 
1

lim lim 0.
(1 )(2 )

nn n n n


 
 

 
 

But lim lim( ) 1 0
1

nn n

ny
n 

  


(the unique fixed point of T).  

Therefore, Picard iteration is not T-stable. 

(ii) 
0 0

1
.

(1 )(2 )
n

n n n n


 

 

  
 

   

But again, lim lim( ) 1 0
1

nn n

ny
n 

  


(the unique fixed point of T).  

Therefore, Picard iteration is not almost T-stable also. 
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(iii) 
0 0

1
.

(1 )(2 )
n

n n n n


 

 

  
 

   

and    
0 0 0

( , ) 0 .
1 1

n
n n n

n nd y p
n n

  

  

    
 

    

Hence, Picard iteration is summable almost T-stable. 

 

In this paper, we study summable almost stability of iterative schemes and establish 

some basic approximate fixed point results for the maps satisfying general contractive 

conditions in the setting of b-metric space. 

The concept of b-metric space was introduced by Bakhtin [1] and popularized by 

Czerwik [10] and many others. 
 

 

Definition 1.1 [10]. Let X  be a non-empty set and 1b  be a given real number. A 

function :d X X R  is said to be a b-metric if and only if for all   , ,x y z X , the 

following conditions are satisfied: 

(i) ( , ) 0 iff ,

(ii) ( , ) ( , ),

(iii) ( , ) [ ( , ) ( , )].

d x y x y
d x y d y x
d x z b d x y d y z

 



 

 

    The pair ( , )X d is called a b-metric space.  

Notice that when b becomes unity in condition (iii), ( , )X d  becomes a metric space. 

Therefore, the class of b-metric spaces contains that of metric spaces. This class of 

spaces has been wildly explored for various types of single-valued and multi-valued 

operators in different settings.  

Now, we discuss some well known definitions of contractive conditions. 

Let :T X X , if for all ,x y X  there exists a constant 0 1a   such that 

                        ( , ) ( , ).                                                         (1.5)d Tx Ty ad x y  

Then T  is called contraction mapping  and constant ‘a’ is called contractivity factor 

for T. 

If there exists a number 
1

,  0
2

a a   such that 

                        ( , ) [ ( , ) ( , )].                                     (1.6)d Tx Ty a d x Tx d y Ty   
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and 

                        ( , ) [ ( , ) ( , )].                                     (1.7)d Tx Ty a d x Ty d y Tx   

Then T  is called Kannan and Chatterjea contractions [29] respectively. 

 

If there exists , , 0,  1a b c a b c      such that 

                    ( , ) ( , ) ( , ) ( , )                         (1.8)d Tx Ty ad x y bd x Tx cd y Ty    

then  T  is called a Reich contraction mapping [29]. 

 If there exists nonnegative constant ia  satisfying 
5

1

1i
i

a


  such that 

1 2 3 4 5( , ) ( , ) ( , ) ( , ) ( , ) ( , )         (1.9)d Tx Ty a d x y a d x Tx a d y Ty a d x Ty a d y Tx      

 then T  is called a Hardy and Rogers contraction mapping [29]. 

    If 4 5 0a a  in (1.9), it becomes (1.8). On putting 1 4 5 0a a a   and 2 3a a   , 

we get (1.6).  

If there exists nonnegative functions 1 2 3 4, , ,a a a a  satisfying 

1 2 3 4
,

sup{ ( , ) ( , ) ( , ) 2 ( , )} 1
x y X

a x y a x y a x y a x y 


      such that for each , ,x y X

1 2 3

4

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

                  ( , )[ ( , ) ( , )]                                                            (1.10)

d Tx Ty a x y d x y a x y d x Tx a x y d y Ty
a x y d x Ty d y Tx

  

 
 

then T  is called a Ciric contraction mapping [29]. 

 

The following example establishes the existence of an  fixed point. 

 

Example 1.2. Let ( , )X d be a metric space with X R  and usual metric d such that  

1 1
,  ,  ,  ,  0.

3
n

xT x x X n N n
n




        

Then, nT  satisfy (1.9) but  not (1.6), (1.7) and (1.8).  

Solution. (i) Let 1 2 3 4 52, 5,  0.2,  0.15,  0.4,  0.05 and 0.1.x y a a a a a        So 

that 1 2 3 4 5 1.a a a a a      Then, 

 
2 1 5 1

( , ) 1.
3 3

n n n nd T x T y T x T y
n n
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Also 

1 2 3 4 5( , ) ( , ) ( , ) ( , ) ( , )

2 1 5 1 5 1 2 1
0.2 2 5 0.15 2 0.4 5 0.05 2 0.1 5

3 3 3 3

1 ( , ).

n n n n

n n

a d x y a d x T x a d y T y a d x T y a d y T x

n n n n
d T x T y

   

             

 

 

Then nT  satisfy (1.9). 

Now, if we take 0.15a  , then from (1.6), 

2 1 5 1
[ ( , ) ( , )] 0.15( 2 5 )

3 3

                                   1 ( , ).n n

a d x Tx d y Ty
n n

d T x T y

      

 
 

nT
 
does not satisfy (1.6). 

Similarly, if we take 0.05a  , then from (1.7), 

5 1 2 1
[ ( , ) ( , )] 0.05( 2 5 )

3 3

                                   1 ( , ).n n

a d x Ty d y Tx
n n

d T x T y

      

 
 

So, nT does not satisfy (1.7). 

Further, if we take 0.2,  0.15,  0.05a b c   , then from (1.8), 

2 1 5 1
( , ) ( , ) ( , ) 0.2 2 5 0.15 2 0.05 5

3 3

                                                  1 ( , ).n n

ad x y bd x Tx cd y Ty
n n

d T x T y

         

 
 

Hence, nT  does not satisfy (1.8). 

(ii) Now,  

 
1 2 1 2

.
3 3 3

n
x x xx T x x

n n
         

But as  

*

* *

* *

* *

0.

or -( )

or .

n

n

n

x x
x T x

x T x

T x x
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Hence, 
* 0x   is an   fixed point of nT . Clearly, it is not a fixed point since

* *  .nT x x n N    

Lemma 1 [6]. Let 0 0{ } ,{ } ,n n n na b 

  be sequences of nonnegative numbers and 0 1,q   

such that  

1 ,   0.n n na qa b n    
 

Then, the following hold true. 

(i) If  lim 0,nn
b


  then lim 0.nn

a


   

(ii) If  
0

,n
n

b




   then 
0

.n
n

a




   

 

2. RESULTS 

Theorem 2.1. Let ( , )X d  be a b-metric space and :T X X  satisfies (1.9). Then for 

each 0,  the diameter of Fix ( )T  is not longer than 

2

2 3 4 5

2 3 3

1 4 5

(1 ( ) ( ))
.

1

r r r a a r a a
r a r a r a

     

  
 

Proof. Let x and y be two   fixed points of T. Then, 

 

2

2 2

2 2

1 2 3 4 5

2 2 2 2

1 2 3

( , ) [ ( , ) ( , )]

           [ ( , ) ( , )]

           ( , )

           [ ( , ) ( , ) ( , ) ( , ) ( , )]

           ( , )

d x y r d x Tx d Tx y
r r d Tx Ty d Ty y
r r d Tx Ty r
r r r a d x y a d x Tx a d y Ty a d x Ty a d y Tx
r r r a d x y r a r a



 

 

  

 

  

  

      

     2 2

4 5

2 2 2 2 3

1 2 3 4

3

5

2 3 3 2 2 2 3 3

1 4 5 2 3 4 5

( , ) ( , )

 ( , ) [ ( , ) ( , )]

             [ ( , ) ( , )].

(1 ) ( , ) .

r a d x Ty r a d y Tx
r r r a d x y r a r a r a d x y d y Ty

r a d y x d x Tx
r a r a r a d x y r r r a r a r a r a



   

     

 

      

 

        

 or 

2 2

2 3 4 5

2 3 3

1 4 5

(1 )
( , ) .

1

r r ra ra r a r ad x y
r a r a r a

     


  
 

or 
2

2 3 4 5

2 3 3

1 4 5

(1 ( ) ( ))
( , ) .

1

r r r a a r a ad x y
r a r a r a

     


  
 

Hence proved. 
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Theorem 2.2. Let ( , )X d  be a b-metric space and :T X X  satisfies (1.10). Then 

for each 0,  the diameter of Fix ( )T  is not longer than 

2

2 3 4

2 3

1 4

(1 ( , ) ( , ) 2 ( , ))
.

1 ( , ) 2 ( , )

r r ra x y ra x y r a x y
r a x y r a x y

    

 
 

Proof. Let x and y be two   fixed points of T. Then, 

2

2 2

2 2

1 2 3

4

( , ) [ ( , ) ( , )]

           [ ( , ) ( , )]

           ( , )

           [ ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

              ( , ){ ( , ) ( , )}]

      

d x y r d x Tx d Tx y
r r d Tx Ty d Ty y
r r d Tx Ty r
r r r a x y d x y a x y d x Tx a x y d y Ty

a x y d x Ty d y Tx



 

 

 

  

  

    

 

2 2 2 2

1 2 3

2

4

2 2 2 2

1 2 3

3

4

     ( , ) ( , ) ( , ) ( , )

              ( , )[ ( , ) ( , )]

           ( , ) ( , ) ( , ) ( , )

              ( , )[ ( , ) ( , ) ( , ) ( ,

r r r a x y d x y r a x y r a x y
r a x y d x Ty d y Tx

r r r a x y d x y r a x y r a x y
r a x y d x y d y Ty d y x d x Tx

   

   

    

 

    

   

2 3 2 2 2 3

1 4 2 3 4

)]

(1 ( , ) 2 ( , )) ( , ) ( , ) ( , ) 2 ( , ) .r a x y r a x y d x y r r r a x y r a x y r a x y          

or 

2

2 3 4

2 3

1 4

(1 ( , ) ( , ) 2 ( , ))
( , ) .

(1 ( , ) 2 ( , ))

r r ra x y ra x y r a x yd x y
r a x y r a x y

    


 
 

Hence proved. 

 

If we put 1 2 3 4 5,  0 and a a a a a a r s     
 

in Theorem 2.1 and  

1 2 3 4( , ) ,  ( , ) ( , ) ( , ) 0 and a x y a a x y a x y a x y r s    
 

in Theorem 2.2, we get 

Theorem 3.2 of Prasad et al. [24]. 

 

Corollary 2.1 [24]. Let ( , )X d  be a b-metric space and :T X X  satisfies  

( , ) ( , ),   [0,1).d Tx Ty ad x y a   

Then for each 0,  the diameter of Fix ( )T  is no longer than 
2

(1 )
.

(1 )

s s
as
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If we put 1 2 3 4 50,  , 0 and a a a b a a r s      in Theorem 2.1 and 

1 2 3 4( , ) 0,  ( , ) ( , ) ,  ( , ) 0 and a x y a x y a x y b a x y r s     in Theorem 2.2, we get 

Theorem 3.4 of Prasad et al. [24]. 

 

Corollary 2.2 [24]. Let ( , )X d  be a b-metric space and :T X X  satisfies  

1
( , ) [ ( , ) ( , )],   [0, ).

2
d Tx Ty b d x Tx d y Ty b    

Then for each 0,  the diameter of Fix ( )T  is no longer than (1 2 ).s s bs    

 

If we put 1 2 3 4 50,   and a a a a a c r s      in Theorem 2.1 and 

1 2 3 4( , ) ( , ) ( , ) 0,  ( , )  and a x y a x y a x y a x y c r s     in Theorem 2.2, we get 

Theorem 3.6 of Prasad et al. [24]. 

 

Corollary 2.3 [24]. Let ( , )X d  be a b-metric space and :T X X  satisfies  

1
( , ) [ ( , ) ( , )],   [0, ).

2
d Tx Ty c d x Ty d y Tx c    

Then for each 0,  the diameter of Fix ( )T  is no longer than 
2

3

(1 2 )
.

1 2

s s cs
cs

  


 

Consequently we get Theorem 3.2, 3.3 and 3.6 of Berinde [5]. 

 

Theorem 2.3. Let ( , )X d  be a b-metric space and :T X X  satisfies (1.9). Suppose 

T has a fixed point p. Let 0x X  and 1 ,   0.n nx Tx n   Then { }nx  converges strongly 

to p and is summable almost stable with respect to T.  

Proof. Using definition of b-metric space, we have 

1 1( , ) ( ( , ) ( , ))

               ( ( , ))

n n n n

n n

d y p r d y Ty d Ty p
r d Ty p

  

 
 

using (1.9), it becomes 

 
1 1 2 3 4 5

1 4 5

( , ) [ ( , ) ( , ) ( , ) ( , ) ( , )] 

              [ ] ( , ).

n n n n n n n

n n

d y p r r a d y p a d y Ty a d p Tp a d y Tp a d p Ty
r r a a a d y p




      

   
 

Hence, iteration (1.1) is summably almost stable with respect to T.   
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Now,  

 

1

1

1

1

1 1 2 3 4 5

1 1 4 5

( , )

   ( ( , ) ( , ))

   ( ( , ) ( , ))

   ( , ) [ ( , )]

   ( , ) [ ( , ) ( , ) ( , ) ( , ) ( , )]

   ( , ) [ ] ( , ) 0 a

n n n

n n

n n

n n

n n n n n n

n n

d y Ty
r d y p d p Ty
r d y p d Tp Ty
rd y p r d Tp Ty
rd y p r a d y p a d y Ty a d p Tp a d y Tp a d p Ty
rd y p r a a a d y p

 













 

 

 

     

     s .n 

 

That is { }nx  converges to p. Hence proved. 

 

Theorem 2.4. Let ( , )X d  be a b-metric space and :T X X  satisfy (1.10). Suppose 

T has a fixed point p. Let 0x X  and 1 ,   0.n nx Tx n   Then { }nx  converges strongly 

to p and is summable almost stable with respect to T.  

Proof. Using definition of b-metric space, 

1 1

1 2 3

4

( , ) ( ( , ) ( , ))

               ( ( , ))

               [ ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

                   ( , )( ( , ) ( , ))] 

              [

n n n n

n n

n n n n

n n

n

d y p r d y Ty d Ty p
r d Ty p
r r a x y d y p a x y d y Ty a x y d p Tp
a x y d y Tp d p Ty
r r







  

 

    



  1 4( , ) 2 ( , )] ( , ).na x y a x y d y p

 

Hence, iteration (1.1) is summably almost stable with respect to T.   

Now,  

1

1

1

1

1 1 2 3

4

( , )

   ( ( , ) ( , ))

   ( ( , ) ( , ))

   ( , ) [ ( , )]

   ( , ) [ ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

                   ( , )( ( , ) ( , )

n n n

n n

n n

n n

n n n n

n n

d y Ty
r d y p d p Ty
r d y p d Tp Ty
rd y p r d Tp Ty
rd y p r a x y d y p a x y d y Ty a x y d p Tp

a x y d y Tp d p Ty

 











 

 

 

    



1 1 4

)]

   ( , ) [ ( , ) 2 ( , )] ( , ) 0 as .n nrd y p r a x y a x y d y p n    

 

That is, { }nx  converges to p. This completes the proof. 
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