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Abstract

In this paper, we establish some approximate fixed point theorems in the
setting of 5-metric space generalizing some of the recent results reported in the
literature. Further, we study summable almost stability of iterative scheme.
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1. INTRODUCTION AND PRELIMINARIES

Let 7:X - X and x" e X. Then, x" is an &—fixed point or an approximate fixed
point of T'if

d(x",\Ix)<¢g, &>0.
For a given &, we denote the set of approximate fixed points of 7"by F (7'), and it is
given by
F(T)={x eX,d(x",Tx") < &}.

In many practical situations, we may need an approximate solution of the problem or
it might not be possible to get an exact fixed point of a map under consideration due
to certain strong restrictions on the map or on the space. An approximate solution
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plays an important role in such problems. Fixed point and approximate fixed points
have been proved to be of prime importance in various areas such as mathematical
economics, game theory, dynamic programming, nonlinear analysis and several other
areas of applicable analysis. Cromme and Diener [9] generalized Brouwer’s fixed
point theorem to a discontinuous map and found approximate fixed points of the
maps. Hou and Chen [14] extended their results to set valued maps and Espinola and
Kirk [11] obtained interesting results in product spaces.Tijs et al. [30] established
approximate fixed point theorems by reducing the strictness on the maps in metric
space. He replaced the compactness conditions used in the Brouwer, Kakutani
theorems [7-8] by boundedness conditions in finite dimensional spaces and also
dropped the completeness of the metric space in Banach’s contraction theorem [2].
Recently Berinde [6] obtained approximate fixed points for operators satisfying
Kannan, Chatterjea and Zamfirescu type of conditions on metric spaces. In recent
years, several authors studied approximate fixed point theory in different settings (see
[3, 17] and the references therein).

There are plenty of iterative schemes available in literature for finding the desired
solution of the problems formulated as fixed point equations. Usually, Picard iteration
is used for strict contractive type operator and Krasnoselskij iteration for non-
expansive or pseudo-contractive operators. Various other schemes such as Mann,
Ishikawa etc are also used in the literature under different situations. It is very
essential to see if these methods are numerically stable or not. Harder and Hicks [12-
13] defined the stability for fixed point iterations.

Let (X,d) be a metric space, 7: X —> X and x, e X. Assume that the iteration
procedure

x,,=f(Tx), n=012,.., (1.2)

where f is some function, converges to a fixed point p of 7. Let {y,}, be an

arbitrary sequence in X and{¢ } _, be defined by & =d(v,..,f(T,»,)), n=0,1,2,...
The fixed point iteration is said to be 7-stable or stable with respect to 7' if and only if

lime, =0=limy, = p. (1.2)

n—>»0

This concept of stability has been widely studied by various authors for different
nonlinear operators for different metric spaces (see [15, 19, 24-28]). Osilike [20-22]
studied the stability of Ishikawa iteration for pseudo contractive operators and
introduced a weaker concept of stability. The fixed point iteration is said to be almost
T-stable or almost stable with respect to 7'if and only if
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Ze <oo:>|Imyn p- (1.3)

n=0

Berinde [4] defined almost stability in much weaker condition and established some
summably almost stable fixed point procedures with respect to various contractive
operator. The fixed point iteration is said to be summably almost 7-stable with respect
to 7'if and only if

Se <o Yd(y, p) <o (1.4)
n=0 n=0

It is remarked that if an iteration procedure is not 7-stable then it is not almost
T-stable also and hence, not summably almost 7-stable but converse may not be true,
see Example 1.1 below (also see [Ex.1, 4]).

Example 1.1. Let X =R. Define 7:X — X where sz% and (X,d) is a metric

space with usual metric. Then to show that iteration procedurex,,, =7x,, n=0,12,...
is neither 7-stable nor almost 7-stable but summable almost 7-stable.

Solution. Let {y,} ={R} be given by y, =1L, n>0. Then,
+n

gizzy/1+l_f(T7yn)
:yn+l_Tyn|
_n+1_ n |
2+n 3(1+n)|
1
<\
L+n)(2+n)

(i) lime, —I|m;
n—> n>e (1+n)(2+n)

But limy, = Iim(li) =1+ 0 (the unique fixed point of 7).
n—»0 n—»0 +n

Therefore, Picard iteration is not 7-stable.

(i Z; =§:a+nx2+n)

But again, limy, = Iim(li) =1+ 0 (the unique fixed point of 7).
n—>0 n—>0 +n

Therefore, Picard iteration is not almost 7-stable also.
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i 2 1
11 E = — < ®©
(i) Zo: oS @+n)(2+n)
and wd , =OOL—O:OOL< .
; ,:7) ,,Z:(;lJrn ‘ =l+n *

Hence, Picard iteration is summable almost 7-stable.

In this paper, we study summable almost stability of iterative schemes and establish
some basic approximate fixed point results for the maps satisfying general contractive
conditions in the setting of A-metric space.

The concept of h-metric space was introduced by Bakhtin [1] and popularized by
Czerwik [10] and many others.

Definition 1.1 [10]. Let X be a non-empty set and »>1be a given real number. A
function d : X x X — R, is said to be a b-metric if and only if for all x,y,ze X, the

following conditions are satisfied:
(i) d(x,y)=0iffx =y,
(ii) d(x,y) =d(y,x),
(i) d(x,z) <b[d(x,y) +d(y,2)].
The pair (X,d)is called a b-metric space.

Notice that when b becomes unity in condition (iii), (X,d) becomes a metric space.

Therefore, the class of h-metric spaces contains that of metric spaces. This class of
spaces has been wildly explored for various types of single-valued and multi-valued
operators in different settings.

Now, we discuss some well known definitions of contractive conditions.

Let 7: X —» X, if forall x,y e X there exists a constant 0 <a <1 such that
d(Tx,Ty) <ad(x, y). (1.5)

Then T is called contraction mapping and constant ‘a’ is called contractivity factor
for T.

) 1
If there exists a number a, 0<a < E such that

d(Tx,Ty) < al[d(x,Tx) +d(y, Tv)]. (1.6)
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and

d(Tx,Ty) < ald(x,Ty) +d(y, Tx)]. .7

Then T is called Kannan and Chatterjea contractions [29] respectively.

If there exists a,b,c>0, a+b+c <1 such that

d(Tx,Ty) < ad(x, y) + bd(x,Tx) +cd(y, Ty)

(1.8)
then T is called a Reich contraction mapping [29].
5
If there exists nonnegative constant «, satisfying Zai <1 such that
i=1
d(Tx,Tv) < ad(x,y)+a,d(x,Tx) + a,d (v, Tv) + a,d (x,Tv) + ad (v, Tx) (1.9

then T is called a Hardy and Rogers contraction mapping [29].

If a, =a,=0in (1.9), it becomes (1.8). On putting @, =a, =a. =0and a, =a, =,
we get (1.6).

If there exists nonnegative functions a,,a,,da;,a, satisfying

sup{a,(x,y) +a,(x,y) +as(x,y) +2a,(x,y)} <A <1 such that for each x,yeX,
x,yeX

d(Tx,Ty) < a,(x, y)d(x,y) +a,(x, y)d (x,Tx) + a;(x, y)d (v, 1y)
+a,(x, )[d(x,Ty) +d(y, Tx)]

(1.10)
then T is called a Ciric contraction mapping [29].

The following example establishes the existence of an & — fixed point.

Example 1.2. Let (X, d) be a metric space with X = R and usual metric d such that

Tnx=£+1, Vxe X, neN, nzl, &>0.
n £
Then, T, satisfy (1.9) but not (1.6), (1.7) and (1.8).

Solution. (i) Let x=2,y =5, a¢,=0.2, a,=0.15, a,=0.4, a, =0.05and ¢, =0.1. So
that a, +a, +a, +a, +a; <1. Then,

d(Tx,T,y)=

I'x—T,y
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Also
ad(x,y)+a,d(x,Tx)+ad(y,T,y)+a,d(x,T,y)+ad(y,Tx)
2 1 5 1 5 1

—02|2 5|+015‘2———— 04‘5———— 2————|+
3 n 3 n 3 n

01‘5—2—1
3 n

+0.05

>1=d(T,x,T,y).
ThenT, satisfy (1.9).
Now, if we take a =0.15, then from (1.6),

2 1 5 1
i

ald(x,Tx)+d(y,Ty)] =0. 15(‘2———— 5_5__

T does not satisfy (1.6).
Similarly, if we take a =0.05, then from (1.7),

5 1 2 1
N

ald(x,Ty)+d(y,Tx)] = 005(‘2———— 5_5__

So, T, does not satisfy (1.7).
Further, if we take ¢ =0.2, »=0.15, ¢ =0.05, then from (1.8),

2 1

ad(x,y)+bd(x,Tx) +cd(y,Ty) = 02|2 5|+015‘2—§—— °_1

005‘5————
3

n n

<1=d(Tx,T,y).
Hence, T, does not satisfy (1.8).
(i) Now,
x 1 2x 1. 2x
! 3 n 3 n 3
But as
x—x, =0,
ox,—-Tx.>-¢&
or-(x,-Tx,)<&

or

S‘Sg.
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Hence, x, =0 is an g—fixed point ofT,. Clearly, it is not a fixed point since
Tx #x VneNl.
Lemma 1 [6]. Let{a, } ,.{b,} . be sequences of nonnegative numbers and 0< g <1,
such that
a,,<qga +b, VYn=0.
Then, the following hold true.
(i) If limp, =0, then lima, =0.

n—>0 n—>0

(ii) If ibn < oo, then ian < 0,
n=0

n=0

2. RESULTS
Theorem 2.1. Let (X,d) be a b-metric space and 7: X — X satisfies (1.9). Then for
each £>0,the diameter of Fix_(T) is not longer than

re(L+r+r(a, +a,)+r’(a, +a;))

2 3 3
1-r‘a,—r'a,—ra,

Proof. Let x and y be two & —fixed points of 7. Then,

d(x,y)<r[d(x,Tx)+d(Ix, y)]
<re+r[d(Tx,Ty) +d(Ty, y)]
<re+r’d(Tx,Ty) +r’e
<re+rie+rilad(x,y) +ad(x,Tx) +ad(y,Ty) +a,d(x,Tv) + ad(y, Tx)]
<re+rie+riad(x,y) +rlae +r*ae +r’a,d(x,Ty) + r’ad(y,Tx)
<re+rie+riad(x,y)+riae +riae+riad(x,y) +d(y,Ty)]

+7ra.[d(y, x) +d(x,Tx)].
(I—rPa, —r’a, —r’a)d(x,y) < re+r’e +rlae + rlae + rla,e +rag.

or

re(L+r+ra, +ra,+ra, +r’ag)

d(x,y) <

2 3 3
1-ra,—ra,—ra
or

d(x.y) < rel+r+r(a, +a;)+ P2 (a, +as5))

2 3 3
1-ra,—r'a,—ra

Hence proved.



6036 Komal Goyal and Bhagwati Prasad

Theorem 2.2. Let (X,d) be a b-metric space and 7': X — X satisfies (1.10). Then
for each &>0,the diameter of Fix (7) is not longer than

re(L+r+ra,(x,y) +ra,(x,y) + 2ra,(x, y))
1-r%a,(x,y) - 2r'a,(x, ) '

Proof. Let x and y be two & —fixed points of 7. Then,
d(x,y) <rld(x,Tx)+d(Tx, y)]
<re+r’[d(Tx,Ty) +d(Iy, y)]
<re+rid(Tx,Ty) + rs
<re+rie+ria,(x,y)d(x, ) +a,(x, y)d(x,Tx) +a,(x, y)d (y,Ty)
+a,(x, y{d(x,Ty) +d(y, Tx)}]
<re+rie+ria(x,y)d(x,y) +r’a,(x,y)e +rla,(x,y)e
+r%a,(x, y)d(x, Ty) +d(y, Tx)]
<re+rie+ria(x,y)d(x,y) +ra,(x, y)e +rla(x,y)e
+ra,(x, Y)[d(x,p) +d(y,Ty) +d(y,x) +d(x,Tx)]

(L—ra,(x,y) 2%, (x,))d(x,y) S re +rle +rla,(x, y)e + rla,(x, y)e + 2ra,(x, y)e.
or

re(L+r+ray(x,y) +ra,(x,y) +2r’a,(x, y))

d(x,y) <
(x,») < (- 2a,(x, y) - 2%, (x, 1))

Hence proved.

If we put a=a a,=a,=a,=a;,=0andr=s in Theorem 21 and
a,(x,y)=a, a,(x,y)=a,(x,y)=a,(x,y)=0and r=s in Theorem 2.2, we get
Theorem 3.2 of Prasad et al. [24].

Corollary 2.1 [24]. Let (X,d) be a b-metric space and 7': X — X satisfies
d(Tx,Ty) <ad(x,y), a<][0,1).

se(1+5)
(1-as?)

Then for each & > 0O, the diameter of Fix_(7) is no longer than
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If we put =0 a,=a;=ba,=a;,=0andr=sin Theorem 2.1 and

a,(x,y)=0, a,(x,y)=as(x,y)=b, a,(x,y)=0and r=sin Theorem 2.2, we get

Theorem 3.4 of Prasad et al. [24].

Corollary 2.2 [24]. Let (X,d) be a b-metric space and 7': X — X satisfies
d(Tx,Ty) < bld(x,Tx)+d(y,Tv)], be<][O, %)

Then for each & > 0, the diameter of Fix_(7) is no longer than se(1+ s + 2bs).

If we put a=a,=a,=0,a,=a,=candr=sin  Theorem 2.1 and

a,(x,y)=a,(x,y) =a,(x,y) =0, a,(x,y)=cand r=sin Theorem 2.2, we get
Theorem 3.6 of Prasad et al. [24].

Corollary 2.3 [24]. Let (X,d) be a b-metric space and 7': X — X satisfies
d(Tx,Ty) < cld(x,Ty) +d(y,Tx)], c€<]0, %)

se(L+s+2cs%)
1-2cs®

Then for each & > 0O, the diameter of Fix_(7) is no longer than

Consequently we get Theorem 3.2, 3.3 and 3.6 of Berinde [5].

Theorem 2.3. Let (X,d) be a b-metric space and 7: X — X satisfies (1.9). Suppose
T has a fixed point p. Let x, € X and x,, =T7x,, n>0.Then {x } converges strongly
to p and is summable almost stable with respect to 7.

Proof. Using definition of 5-metric space, we have
d(yrz+l’p) S r(d(yn+l’ Tyn) + d(Tyn’p))
S r(gn +d(Tyn’p))

using (1.9), it becomes

d(yn+l7p) S rgn + r[ald(yn’p) +a2d(yn’Tyn) +a3d(p’Tp) +a4d(yn’Tp) +a5d(p7Tyn)]
< rgn + r[al +a4 +a5]d(yn7p)'

Hence, iteration (1.1) is summably almost stable with respect to 7.
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Now,
&, = d(yn+l' Tyn)
<r(d(y,.,p)+d(p.1y,))
<r(d(y,.p)+d(Ip,Ty,))
<rd(y,.., p)+rld(Ip,Ty,)]
<rd(y,.,p) +rlad(y, p)+ad(y, Iy,) +ad(p,Ip) + a,d(y, Tp) + ad(p, Ty,)]
<rd(y,,.p)+ria, +a,+ald(y,, p) >0asn— .

That is {x,} converges to p. Hence proved.

Theorem 2.4. Let (X,d) be a b-metric space and 7: X — X satisfy (1.10). Suppose
T has a fixed point p. Let x, € X and x,, =T7x,, n>0.Then {x } converges strongly
to p and is summable almost stable with respect to 7.
Proof. Using definition of 5-metric space,
d(Yy1r ) S1(d (00, Ty,) +d(Ty,, p))
<r(e,+d(Iy, p))
<re, +rla(x,»)d(y,, p)+a,(x, »)d(y,.1y,) + ay(x, y)d (p,Tp) +
a,(x, y)(d(y,,Tp) +d(p,1,))]

<re, +rlay(x, y) +2a,(x, y)ld(y,, p).

Hence, iteration (1.1) is summably almost stable with respect to 7.

Now,

&, =d(¥,..,1v,)
<r(d(y,.,p)+d(p,1y,))
<r(d(y,.1,p)+d(Ip,Ty,))
<rd(y,..p)+rld(Tp,1y,)]
<rd(y,.,p) +rla(x, »)d(y, p)+a,(x,»)d(y, Iy,) +ay(x,y)d(p,Tp) +
a,(x, »)(d(y,, Tp) +d(p,Ty,))]
<rd(y,.. p)+rla(x y)+2a,(x,y)ld(y, p) >0asn—>x

That is, {x,} converges to p. This completes the proof.
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