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Abstract
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sg sg
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closed sets coincide in *-topology as well as in T, -spaces.

2000 AM S Classification: 54A05.

Keywords. local-function, semi-open set, Is*g -closed set, Is*g -open set, s'g-

closed set, s g-open set, *-closed set, s -normal space.

Introduction
Ideals in topological spaces have been considered since 1930. In 1990, Jankovic and
Hamlett [9], once again initiated the application of topological ideals and generalized
the most fundamental properties in topological spaces. In this regard, compactness
[6,16,18], connectedness, resolvability [5], submaximal spaces, extremally
disconnected spaces and separation axioms [1] have been generalized via topological
ideals in the recent years.

| ,-closed sets were first introduced by Dontchev et al. [4] in 1999. Recently,

Navaneethakrishnan and Joseph [15] further investigated and characterized | -closed
sets and | ,-open sets and obtained some of their properties. In this paper, we define
and characterize Is,,g -closed sets and Is*g -open sets in ideal topological spaces and

investigate some of their properties. It will be seen that | -closed sets and Is*g-
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closed sets coincide in *-topology as well as in T,-spaces. A characterization of s -
normal spaces in terms of IS*g -open sets is given. It is seen that every s g-closed set

is IS*g -closed and every IS*g -closed set is | -closed. Counter examples are given to

show that reverse implications are not true in general.

Preliminaries
An ideal | on a topological space (X,7) is a collection of subsets of X which satisfies

the following properties:
(i) Ael and Bc A implies Bel .

(i) Ael and Bel implies AUBel .

(X,z,1) represents the topological space with an ideal 1. Let P(X) be the set of all
subsets of X, a set operator () :P(X) — P(X), called the local function [11] of A
with  respect to z and I, is defined as follows: for AcX,
A(1,7)={xe X /U nAg | for every open set U containing x}. We simply write A"
instead of A"(l,7) in case there is no confusion. X is often a proper subset of X. For
every ideal topological space (X,7,1), there exists a topology 7 (1), finer thanz ,
generated by A(l,7)={U\J:Uer and Jel}. It is known in [9] that A(l,z) is not
always a topology on X. A subset A of an ideal space (X,z,1) is called 7" -closed [9]
or simply *-closed (resp. *-dense in it self [7]) if A'c A (resp. AcA’). A
Kuratowski closure operator cl”() for a topology 7" (l,7), called the *-topology, is
defined by cl"(A)=AUA’(z,1) [20]. By a space, we always mean a topological
space (X,7) with no separation properties assumed. For a subset A of X, cl(A) (resp.
scl(A)) and Int(A) (resp. sint(A)) denotes the closure (resp. semi-closure) of A and the
interior (resp. semi-interior) of A in (X,7). Similarly cl"(A) and int"(A) will
represent the closure and the interior of A respectively in(X,7") .

Definition 2.1 A subset A of an ideal space (X,7) is said to be semi-open [12] if
there exists an open set U in X such that U c Accl(U).

o -open [17] if Ac Int(cl(Int(A))).

| ,-closed [4] if A" cU whenever AcU and U is open in X.

g-closed [13] if cl(A) < U whenever AcU and U is open in X.

s g-closed [10] if cl(A) < U whenever AcU and U is semi-open in X.

go -closed [14] if acl(A) < U whenever AcU and U is a—open in X.

gs-closed [2] if scl(A) < U whenever AcU and U is open in X.
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The complement of a semi-open (resp.« -open, | -closed) set is semi-closed
(resp. «-closed, I,-open). SO(X) (resp. SC(X,X)) represents the collection of all
semi-open sets (resp. semi-closed sets containing x) in X.

|, -closed sets

Definition 3.1 A subset A of an ideal space (X,7,1) is said to be I -closed if
A cU whenever AcU and U is semi-open in X. The complement of an g -
closed set is said to be I, -open.

Remark 3.1 Every I, -closed setis | -closed but the converse is not true in general.
To see this, let X ={a,b,c,d} with 7={¢, X,{a,b}} and | ={¢,{a}}. Then A= {d}
is 1, -closed set but it is not |, -closed, since A" ={c,d} and {a,b,d} is a semi-open
set containing A but it is not containing A"

Remark 3.2 (1) Every *-closed set is |, -closed but not conversely. To see this, let

X={a,b,c}with 7={¢, X,{a,b},{c}} and | ={¢.{a},{c}.{a,c}}. Then A={b,c} is
| . -Closed but it is not *-closed.

(2) Every *-closed setis | -closed. Converse is true if X is a T, -space.
(3) In T,-space, I, -closed setsand | -closed sets coincide.

Remark 3.3
(1) l'is 1., -closed in an ideal space (X,z,1).

(2) A" is | ., ~Closed for every subset A of (X,z,1).

Remark 3.4 The following diagram shows the interrelation between the resulting
notion of 1., -closed sets and related concepts. Reverse implications do not hold.

*—closed
d N
Is*g—clow — |, —closed
T T
closed —  sg-closed — g—closed
\2 \2 \’

o —closed - go —closed — gs—closed
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Remark 3.5 In an ideal space (X,z,1), | -closed sets are generalization of
s g -closed sets which is itself a generalization of the closed set. An | -, ~Closed set
may not be s'g-closed. To see this, let X ={a,b,c,d} with z={¢, X,{a,b},{a,b,c}}
and | ={¢,{a},{c}.{a,c}}. Then A={a,d} is I -closed set but it is not s g -closed.
Since {a,b,d} is a semi-open set containing A but it is not containing cl(A). An I -
closed set is s'g-closed if 1={g}.

Theorem 3.1 Let (X,7,1) be an ideal space and A a non-empty subset of X. Then
the following statements are equivalent:

(1) Ais I, -closed.

(2) d’(A) c U forevery semi-openset U containing A.
(3) Forall xe c"(A), scl({x}) N A= ¢.

(4) cl"(A) — A contains no non empty semi-closed set.

(5) A" — A contains no non empty semi-closed set.

Proof. (1) = (2)Let A be an I, -closed set. Then clearly c”(A) c U whenever
Ac U and U is semi-open in X.

(2) = (3). Supposexe cl (A . If sc({X})"A=¢, then AcX - scl({x})
where X —scl({X}) is a semi-open set. By(2), cl (A) < X — scl({x}). This
contradicts the fact that x e cl"(A) . Hence scl ({x}) N A # ¢. This proves (3).

(3) = (4). Suppose F ccl’(A) — A where Fe SC(X,Xx) . Since Fc X - A
and {X3< F. This implies scl{x}c F and scl({x})"A=¢. Since xe cl (A), by
(3) scl({x}) » A= ¢, acontradiction. This proves (4).

(4) = (5). Assumethat F c A" — A where Fe SC(X) and F # ¢. This gives
F < cl"(A) — A. This contradicts (4).

BG) =0 Let AcU where Ue SO(X) such that A"z U. This gives
A N(X-U)zp or A —[X-(X-U)]#g. This gives A —-U #¢. Moreover,
A" —U=A"n (X-U) is semi-closed in X since A" =cl(A") isclosed in X by [9,
Theorem 2.3(c)] and (X—-U)e SC(X). Also A"-Uc A" —A . This gives that

A" — A contains a non empty semi-closed set. This contradicts (5). This completes
the proof.

Theorem 3.2 Let (X,7,1) be an ideal space and A be a | -closed set. Then

following statements are equivalent:
(1) Alis *-closed set.

(2) cl”(A) — A is a semi-closed set.
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(3) A" — A is asemi-closed set.

Proof. (1) = (2)Let A be *-closed set. Then A —A=¢. Now
A — A=cl"(A) — A gives c” (A) — A=¢. This proves that cl”(A) — A is semi-
closed set.

2)=(@3). This is trivial.

=(Q1). Let A" — A be a semi-closed set. Now A is |, -Closed and by

Theorem 2.1(5), A" — A contains no non-empty semi-closed set, therefore
A" — A=¢. This proves A" c A and hence A is *-closed.

Theorem 3.3 In an ideal space (X,7,1), an | -closed and *-dense set in-itself is

s g-closed.

Proof. Suppose A is *-dense in itself and I, -closed in X. Let U be any semi-open

set containing A, then by Theorem 2.1 (2) cl"(A) c U. Since A is *-dense in itself,
Ac A". By [19, Theorem 5] A" =cl(A")=cl(A) =cl"(A). We get cl (A) cU
whenever A c U . This proves that A is s*g-closed.

Corollary 3.1 Let A be a semi-open and |, -closed subset of an ideal space (X,z,1)

where | is codense in X. Then Ais s g-closed.

Proof. By [19, Theorem 3], Ais *-dense in itself and hence by Theorem 2.3, A is
s g-closed.

Theorem 3.4 Let (X,z,1) be an ideal space. If AandB are subsets of X such that
AcBccl (A) and A is |, -closed then B is I, -closed.

Proof. Since A is |, -closed set, by the Theorem 2.1(5), cl "(A)— A contains no non-
empty semi-closed set. Since, Ac Bccl™(A) implies, cl"(B) — Bc cl"(A) — A. So
cl”(B) — B contains no non-empty semi-closed set. By Theorem 2.1(4), B is g -
closed.

Theorem 3.5 Let (X,7,1) be an ideal space and Ac X. Then A is I, -closed if

and only if A=F—N, where F is *-closed and N contains no non-empty semi-
closed set.

Proof. If A is I -closed set then by the Theorem 2.1(5), N =A"— A contains no
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non-empty semi-closed set. Let F=cl"(A), then F is  *-closed set and
F-N=(AUA)- (A" -A) =A.

Conversely, let U be any semi-open set in X containing A, then F—NcU
implies  FN(X-U) cFN[X-(FAN)]=FN[(X-F) UN]J=FANcN. By
hypothesis ~ AcF and FcF as F is  *-closed  gives
A'N(X-U)cF n(X-U)cFN(X-U)cN, where A"n(X-U) is a semi-
closed set. By hypothesis A" (X -U)=¢ or A'c U implies Ais I -closed set.

Lemma3.1[4, Lemma 2.6] If A and B are subsets of an ideal space (X,z,1), then
(ANB) c A" nB".

Theorem 3.6 Let (X,7,1) be an ideal space. If A is I -closed and B is *-closed in
X, then ANB is I, -closed.

Proof. Let U be a semi-open set in X containing AnB. Then AcU uU(X-B).
Since A is I, -closed, therefore A"cU U (X-B) or BNA cU . Using Lemma

2.1, (AnB) cA"nB c A"nBc U because B is *-closed. This proves that AnB
is |, -closed.

Theorem 3.7 Let (X,7,1) be an ideal space and A a non empty subset of X. A is
|-y -open if and only if Fc int"(A) whenever Fc A and Fe SC(X).

Proof. Suppose A is |, -open set and Fc A, where FeSC(X). Then
X—-Ac X-F.

By Theorem 3.1(2), c (X-A)c X-F. This proves Fcint (A).
Conversely, Let U be any semi-open set containing X — A. Then X-U < A. By
hypothesis, X -U cint (A) . This implies ¢l (X -A)c U . By Theorem 3.1(1)
X—Ais |, -closed or Ais | -open.

Theorem 3.8 Let A be an I, -open set in an ideal space (X,z,1) and
int"(A) © B < A.ThenB is |, -open.

Proof. Let F be any semi-closed set in X contained in B. Then Fc A Since A is
| -open. Therefore, by Theorem 3.7, Fcint’ (A). But int"(A)cint’(B),
implies F ¢ int”(B) . By Theorem 3.7, Bis |, -open.
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Theorem 3.9 Let (X,7,1) be an ideal space and A a non empty subset of X. Then A
is |, -closed if and only if Au(X - A" is | -y -Closed.

Proof. Suppose A is I, -closed. Let U be a semi-open set such that
AU(X-A)cU.ThenX-Uc X-(AU(X-A")) =A -A.

Since A is I, -closed, by Theorem 2.1(5) , X-U=¢ and hence X=U . Thus
X is the only set containing Au(X —A"). This gives [AU(X-A)] < X. This
proves AU(X—A") is I, -closed.

Conversely, let F be any semi-closed set such that Fc A —A. Since
A" —A=X-(AU(X-A")). This gives AU(X—-A)c X-Fand X-F is semi-
open. By hypothesis, (AU(X-A)) =X-F and hence FcX-A". Since
Fc A —A itproves that F=¢ and hence A" c X —F € SO(X). This proves that A
is I, -closed.

Theorem 3.10 Let (X,7,1) be an ideal space and Ac X . Then AU(X —A") is g -
closed if and only if A"—A is I, -open.

Proof. Let AU(X—A") be I, -closed. We show that X —(A"—A) is | -closed.

Let U a be semi-open set containing X—(A"—A). Then X-Uc A" —A. By
Theorem 2.1(5), X -U =¢. Therefore X is the only semi-open set which contains

X—(A"—A) and hence (X—(A"-A)) < X. This proves X —(A = A) is |-
closedor A"—A is I -open.

Conversely, let A'—A be I -open. Then X—(A'—A)=AU(X-A") is |-
closed.

Corollary 3.2 Let (X,7,1) be an ideal space and Ac X . Then A is I -closed if
and only if A" — Ais I, -open.

Theorem 3.11 Let (X, z,1) be an ideal space. Then every subset of X is I, -closed
if and only if every semi-open set is *-closed.

Proof. Suppose every subset of X is I -closed. Let U be a semi-open set then U

is 1., -closed and U™ < U. Hence U is *-closed.

Conversely, suppose that every semi open set is *-closed. Let A be non empty
subset of X contained in a semi-open set U. Then A'c U~ implies A"c U . This
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proves that Ais 1., -closed.

Example 3.1 Consider R the set of all real numbers with the usual topology. If
| =P(R) then A" =¢ for every subset A of X or A'c A. This proves that A is *-
closed.

Definition 3.2 [10] The intersection of all semi-open subsets of a space X containing
set A is known as semi kernel of Aand is denoted by sker(A).

Lemma 3.2 A *-dense in itself subset A of a space X is I, -closed if and only if
A’ c sker(A).

Proof. Assume that an 1., -closed set A is a *-dense in itself. Then by [19,Theorem

*
5], A'=cl(A). But A < N{G:AcG and Ge SO(X)}= sker(A). The converse is
trivial.

Lemma 3.3 [8, Lemma 2]Every singleton {x} in a space X is either no-where dense
or preopen.

Theorem 3.12 Arbitrary intersection of *-dense in itself, | -closed sets in an ideal
space (X,7,1) is |, -closed.

Proof. Let {A, : & e Q} be an arbitrary collection of *-dense, I, -closed sets in an

ideal space (X,z,1) and let A= A,. Let xe A". In view of Lemma 2.3, we
consider the following two cases.

Case 1: {x} is no-where-dense. If x¢ A, then for some je Q, we have x¢ A,. Since
no-where-dense subsets are semi-closed [3, Theorem 1.3], therefore xe sker(A,).
Again by Lemma 2.2, Aj*g sker(A;). Since A; is *-dense in itself, 1. -closed
implies xe A =d(A) c cl(A)c sker(A). By contradiction xe A and hence
xe sker(A). This proves that A" c sker(A) and hence by Lemma 2.2, A is g -
closed.

Case2: {x} is pre-open. Let F=Int(Cl({x})). Assume that xe sker(A). Then, there

exist a semi-closed set C containing x such that C~ A=¢ . Now by [3, Theorem 1.2]
xe F=Int(Cl({x})) < Int(CI(C))c C. Since F is an open set containing x and

xe cl(A)=A", therefore, FNA#¢. Since Fc C therefore Cn Az¢. A
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contradiction. Hence xe sker(A). By Lemma 2.2, Ais I, -closed.

Lemma 3.4 [4]Let {A:ie Q} be a locally finite family of sets in an ideal space
(X,z,1). Then Uico A'(1) =(U o A) (1),

Theorem 3.13 Let (X,7,1) be an ideal space. If {A:ie Q}is a locally finite family
of sets and each Aj is I, -closed in (X,z,1). Then UiEQ A is |, -closed.

Proof. Let U, A < U where U is semi-open set in X. Since for each i, Aj is I, -

closed, A"cU for each ieQ. Hence U, ,A cU. Using Lemma 2.4,
(UicaA)'cU . Hence U._ | A is I, ~closed.

Theorem 3.14 Union of two | ., -closed sets is |, -closed.

Proof. Let A, B be 1., -closed sets and W be a semi-closed set such that AUBcCW .

* * *
This implies A"cWandB cW. This implies A UB = (AuUB) cW. This
proves that AUB is I, -closed set.

Example3.2 Let X = N and J be the cofinite topology. Let
{A A ={23,....,n+1},ne N} be a collection of I, -closed sets in X. Then

U A, = N \{1} =A (say) having a finite complement is open and hence semi-

ne N

open but not closed. As A" =cl(A) =N ¢ A for | =¢, gives that A is not | -, ~Closed

but A"=gc A for | =P(X). In this case arbitrary union of | - -Closed sets is I, -
closed.

Theorem 3.15 Every open set is I, -open.

Proof. LetU be an open set. We need to show U is |, -open. For this we show that
X-U is | -y ~Closed. Let X-UcG where Ge O(X).

Since X —U s closed. So by [9, Theorem 2.3] (X-U) ccl(X-U)=X-U or
(X-U) ¢ X-Uc G. This proves that X —U is I -closed or U is I, -open.

Definition 3.2.A space X is s*-normal [10], if for each pair of disjoint semi-closed
sets A and B, there exist disjoint open sets U and V such that A cUand B c V.

Theorem 3.16Let (X,7,1) be an ideal space where | is completely co dense. Then
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the following statements are equivalent:

(1) X is s -normal.

(2) For any disjoint semi-closed sets Aand B, there exit disjoint I, -open setsU and
V containing A and B respectively.

(3) For any semi-closed set A and semi-open set V containing A there exists an
|, -open set U such that AcU ccl”(U)cV.

Proof. (1) = (2) This proof follows from the fact that every open set is I, -open set.

(2)= (3) Suppose A is semi-closed and V is a semi-open set containing A Since A
and X -V are disjoint semi-closed sets, there exist disjoint |, -open sets U and W
such that AcU and X -V cW. Since X~V is semi closed and Wis | -open By

Theorem 2.7, X-Vcint"(W) and hence X -—int"(W) cV. Again UNW=¢
implies U nint" (W) =¢ and hence ¢’ (U) cX—int (W) cV. Thus U is the
required I, -open set. This implies Ac U c cd’U)c V.

(3)=(@) Let Aand B be two disjoint semi-closed subsets of X. By hypothesis
there exists an 1., -open set U such that Ac U c”(U) c X-B. Since U is g -

open set and AcU , by Theorem 2.7, Ac int"(U). Sincel is completely co- dense,
By [19, Theorem 6], 7" < 7* and so int” (U) and X —cl (U)e 7 .

Hence Ac int” (U) c int(cl (int(int" (U))))= G and
Bc X —cl " (U)c int(cl(int(X —cl"(U))))=H. Hence, G and H are required

disjoint open sets containing A and B respectively. This proves (1). This completes
the proof.
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