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Abstract 
 

In this paper, we investigate the problem of existence of positive solutions for 
the nonlinear nth order boundary value problem: 
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where λ is a positive parameter. By using Krasnoselskii’s fixed point theorem 
of cone, we establish various results on the existence of positive solutions of 
the boundary value problem. 

Under various assumptions on )(ta and ))(( tuf , we give the intervals of 
the parameter λ which yields the existence of the positive solutions. An 
example is also given to illustrate the main results. 
 
Keywords:  nth order, boundary-value problem, Krasnoselskii’s fixed-point 
theorem, Green’s function, positive solution. 

     
 
Introduction 
One of the most frequently used tools for proving the existence of positive solutions 
to the integral equations and boundary value problems is Krasnoselskii’s theorem on 
cone expansion and compression and its norm-type version due to Guo [4]. To the 
best of our knowledge, Wang [7] is the first one who has used this approach. Ever 
since this pioneering work was achieved, a lot more research was done  in this area. 
Recently[2,5], used Krasnoselskii’s fixed-point theorem to prove some existence 
results to the nonlinear nth order singular boundary value problem: 
 The purpose of this paper is to establish the existence of positive solutions to 
nonlinear nth order boundary value problem: 
  ( ) ( ) ( ) ( ( )) 0, 0 1,nu t a t f u t tλ+ = < <   (1.1) 
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 ( 1)(0) ''(0) (0) (0) 0, '(1) ''(1) 0.nu u u u u uα β−′′′= = = − − − = = + =   (1.2) 
 Where 0>λ is a positive parameter and ),0[)1,0(: ∞→a  is continuous 

and ∫ >
1

0

0)( dtta , ),0[),0[: ∞→∞f  is continuous and .0,0, >+≥ βαβα  Here, by a 

positive solution of the boundary value problem we mean a function which is positive 
on (0, 1) and satisfies differential equation (1.1) and the boundary condition (1.2). 
 
Preliminaries 
In this section, we present some notations and lemmas that will be used in the proof 
our main results. 
 
Definition 2.1. Let E be a real Banach space. A nonempty closed set EK ⊂  is called 
a cone of E if it satisfies the following conditions: 
(1) 0, >∈ λKx  implies Kx ∈λ ; 
(2) KxKx ∈−∈ , implies 0=x . 
 
Definition 2.2. An operator is called completely continuous if it is continuous and 
maps bounded sets into precompact sets. 
 All results are based on the following fixed point theorem of cone expansion-
compression type due to Krasnoselskii’s. See, for example, [4] and [8]. 
 
Theorem 2.1. Let E be a Banach space and EK ⊂  is a cone in E. Assume that 

1Ω and 2Ω  are open subsets of E with 10 Ω∈  and 21 Ω⊂Ω . Let 

KKT →ΩΩ∩ )\(: 12  be a completely continuous operator. In addition suppose 
either: 
(H1) 1, Ω∂∩∈∀≤ KuuuT and 2, Ω∂∩∈∀≥ KuuuT  or 

(H2) 2, Ω∂∩∈∀≤ KuuuT and 1, Ω∂∩∈∀≥ KuuuT  

holds. Then T has a fixed point in   )\( 12 ΩΩ∩K . 
 
Lemma 1.1. Let ]1,0[Cy ∈  then the boundary value problem 

 ( ) ( ) ( ) 0, 0 1,nu t y t t+ = < <   (2.1) 

 ( 1)(0) ''(0) (0) (0) 0, '(1) ''(1) 0.nu u u u u uα β−′′′= = = − − − = = + =   (2.2) 
has a unique solution  

  ∫=
1

0

)(),()( dssystGtu , 

where    
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Proof: Applying the Laplace transform to Eq. (2.1) in the light of Eq. (2.2) we get 
  1 2 ( 1)( ) (0) '(0) (0) ( )n n n ns u s s u s u u y s− − −− − − − − − = −   (2.3) 
 The Laplace inversion of Eq. (2.3) gives the solution as: 

 
1 12 3 1

0 0 0

(1 ) (1 ) ( )
( ) ( ) ( ) ( )

( 2)! ( 3)! ( 1)!

tn n ns s t s
u t t y s ds t y s ds y s ds

n n n
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− − −− − −= + −
− − −∫ ∫ ∫ .  (2.4) 

 The proof is complete. 
 It is obvious that 
 0),( ≥stG     and   .1,0),,(),1( ≤≤≥ ststGsG  (2.5) 
 
Lemma 2.1. ),1()(),( sGtqstG ≥ for 1,0 ≤≤ st , where ( )q t t= . 
 
Proof:  If st ≤ , then: 
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 If st ≥ , then         
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 The proof is complete. 
 Solution in the cone 
 In this section, we will apply Krasnoselskii’s fixed-point theorem to the 
eigenvalue problem (1.1), (1.2). We note that )(tu is a solution of (1.1), (1.2) if and 
only if  

  10,))(()(),()(
1

0

≤≤= ∫ tdssufsastGtu λ . (3.1) 

 For our constructions, we shall consider the Banach space ]1,0[CX =  equipped 

with standard norm Xutuu
t

∈=
≤≤

,)(max
10

. Define a cone P  by  
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  ]}1,0[,)()(,0)({ ∈≥≥∈= tutqtutuXuP  

 It is easy to see that if Pu ∈ , then )1(uu = . Define an integral operator 

XPT →: by 

  .,10,))(()(),()(
1

0

PutdssufsastGtuT ∈≤≤= ∫λ  (3.2) 

 Notice from (2.5) that, for Pu ∈ , 0)( ≥tuT on ]1,0[  and 
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 Thus .)( PPT ⊂  In addition, standard arguments show that T  is completely 
continuous. 
 Following [3,6], we define some important constants: 
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 Here we assume that 0
1 =
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if ∞=∞f  and ∞=
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Theorem 3. 1. Suppose that 0FBfA >∞ . Then for each )
1

,
1

(
0FBfA ∞

∈λ  the problem 

(1.1) and (1.2) has at least one positive solution.  
 
Proof: By the definition of 0F , we see that there exists an 01 >l , such that 

uFuf )()( 0 ε+≤ for 10 lu ≤< .  If Pu ∈  with 1lu = , we have  
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 Choose 0>ε sufficiently small such that 1)( 0 ≤+ BF λε . Then we 

have uuT ≤ . 

 Thus if we let }{ 11 luXu <∈=Ω , then uuT ≤ for 1Ω∂∩∈Pu . 

 Following Sun [3], we choose
1

(0, )
4

c ∈ , such 

that 1)()(),1()(
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ufuf )()( ε−≥ ∞ for 3lu > . If Pu ∈  with 2lu = , we have  
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 Choose 0>ε sufficiently small such that 1)( ≤−∞ Af λε . Then we 

have uuT ≥ . 

 Let }{ 22 luXu <∈=Ω , then 21 Ω⊂Ω  and uuT ≥ for 2Ω∂∩∈Pu . 

 Condition (H1) of  Krasnoselskii’s fixed-point theorem is satisfied. So there exists 
a fixed point of T in P . This completes the proof. 
 

Theorem 3. 2. Suppose that ∞> FBfA 0 . Then for each )
1

,
1

(
0 ∞

∈
FBfA

λ  the problem 

(1.1) , (1.2) has at least one positive solution.  
 
Proof:  From the definition of 0f , we see that there exists an 01 >l , such that 

ufuf )()( 0 ε−≥ for 10 lu ≤< .  If Pu ∈  with 1lu = , we have  
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 Choose 0>ε sufficiently small such that 1)( 0 ≥− Af λε , then uuT ≥ for 
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1Ω∂∩∈Pu . 

 By the same method, we can see that, if Pu ∈  with 2lu = , then we have  

uuT ≤  for 2Ω∂∩∈Pu . 

 Condition (H2) of Krasnoselskii’s fixed-point theorem is satisfied. So there exists 
a fixed point of T in P . This completes the proof. 
 
Theorem 3.3. Suppose that uufB <)(λ  for ),0( ∞∈u . Then the problem (1.1), (1.2) 
has no positive solution. 
 
Proof: Following [1,6], assume to the contrary that u is a positive solution of (1.1), 
(1.2). Then 

)1()(),1(
)1(
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u
dssusasG
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 This is a contradiction and completes the proof. 
 
Theorem 3 .4. Suppose that uufA >)(λ  for ),0( ∞∈u . Then the problem (1.1), (1.2) 
has no positive solution. 
 
Proof: Assume to the contrary that u is a positive solution of (1.1), (1.2). Then 

).1()()(),1()()(),1(
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 This is a contradiction and completes the proof. 
 
Example 3.5: Consider the boundary value problem  

 
2

(5) 2 7
( ) (10 2) (8 sin ) 0

1

u u
u t s u

u
λ ++ + + =

+
  (3.3) 

 (4)(0) ''(0) (0) (0) 0,            7 '(1) 3 ''(1) 0u u u u u u′′′= = = = + =   (3.4) 

 Then 0 0 8, 63, 49F f F f∞ ∞= = = = , and 8 ( ) 63u f u u< < . By direct 

calculations, we obtain that 0.0957341A =  and 0.3047619B = . Since the general 
form for a and B are  

  
[ ]

[ ]

960 2 (120 (19 3 ))
               if  n 2

7(3 ) 2

232+2n(31+n(10+3n))
B=                         if  n 2
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�
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 From theorem 3.2 we see that if (0.2131754, 0.4101562)λ ∈  then the problem 
(3.3), (3.4) has a positive solution. From theorem (3.3) we have that if 

0.0520325<λ then the problem (3.3), (3.4) has no positive solution. By theorem 
(3.4), if 0.983415>λ then the problem (3.3), (3.4) has no positive solution. 
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