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Abstract

In this paper, we investigate the problem of existence of positive solutions for
the nonlinear nth order boundary value problem:

u™@t)+A at)f ui)), O<t<l, ,
u(@=u"(0)=u”(0)=———=u""0)=0, o u'@®W+A u"@=0.
where ) is a positive parameter. By using Krasnoselskii’s fixed point theorem
of cone, we establish various results on the existence of positive solutions of

the boundary value problem.
Under various assumptions on a(t)and f (u(t)), we give the intervals of

the parameter A which yields the existence of the positive solutions. An
exampleisaso given to illustrate the main results.

Keywords: nth order, boundary-value problem, Krasnoselskii’s fixed-point
theorem, Green’s function, positive solution.

Introduction
One of the most frequently used tools for proving the existence of positive solutions
to the integral equations and boundary value problems is Krasnoselskii’s theorem on
cone expansion and compression and its norm-type version due to Guo [4]. To the
best of our knowledge, Wang [7] is the first one who has used this approach. Ever
since this pioneering work was achieved, a lot more research was done in this area
Recently[2,5], used Krasnoselskii’s fixed-point theorem to prove some existence
results to the nonlinear nth order singular boundary value problem:

The purpose of this paper is to establish the existence of positive solutions to
nonlinear nth order boundary value problem:

u™(t)+A at)f (ut))=0, O<t<l, (1.1)
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u(@ = u"(0)=u”(0)=———=u"20)=0, o u'@®+p u"@@)=0. (1.2)
Where A>0is a positive parameter and a:(0,1) —»[0,e0) is continuous

1
and ja(t)dt>0, f :[0,00) —[0,0) iscontinuousand &, >0, o+ >0. Here, by a
0

positive solution of the boundary value problem we mean a function which is positive
on (0, 1) and satisfies differential equation (1.1) and the boundary condition (1.2).

Preliminaries
In this section, we present some notations and lemmas that will be used in the proof
our main results.

Definition 2.1. Let E be areal Banach space. A honempty closed set K c E iscalled
acone of Eif it satisfies the following conditions:

(1) xe K, 4>0 impliesixe K ;

(2) xe K,—xe K impliesx=0.

Definition 2.2. An operator is called completely continuous if it is continuous and
maps bounded sets into precompact sets.

All results are based on the following fixed point theorem of cone expansion-
compression type due to Krasnoselskii’s. See, for example, [4] and [§].

Theorem 2.1. Let E be a Banach space and K c E is a cone in E. Assume that
Q,and Q, are open subsets of E with 0eQ, and QcQ,. Let

T:KN(Q: \Q,) > K be a completely continuous operator. In addition suppose
either:
(H1) [Tu| <|ul.Vue K noQ,and |Tu| |ju|, Yue K noQ, or

(H2) [Tu| < |u], Yue K noQ, and [T u| > u|, Yue K noQ,
holds. Then T hasafixed pointin K N (Q2\Q,).

Lemma 1.1. Let ye C[0,]] then the boundary value problem
u™t)+y(t)=0 O<t<l, (2.1)
u(@)=u"0)=u"(0)=---=u"?0)=0, a u'@Q+p u"@=0. (2.2)
has a unique solution
1
u(t) = [G(t,s) y(s)ds,
0

where
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'Bt(:(L_S)::)ISH (1(‘5)(2”)|2) - (t(‘s)lr)'ll . Oss<t<l
Git.s)= & n-3)! n-— L n-1n!
Bra-s)", A=8)"" Ost<s<l
o (-3 (n-2)!
Proof: Applying the Laplace transform to Eqg. (2.1) in the light of Eq. (2.2) we get
s"u(s)-s"u(0)-s"u'(0)————u"P(0) =-y(s) (2.3)
The Laplace inversion of Eq. (2 3) givesthe solution as:
1 — -3 t n-1
@-9™* ,5 (1-s)" t-s)
u(t)= as. 2.4
0-F &5  Fes j(( YO 24)
The proof is complete.
It is obvious that
G(,s)>0 and G(1,s)>G(t,s), 0<t,s<L (2.5)

Lemma2.1. G(t,s) > q(t)G(Ls)for 0< t, s<1,where q(t) =t .
Proof: If t<s, then:
n-2 n-3
-9 B (1-3)

6ts) 02 ta g €9 +0-2 - S

a9~ a7 8 09 garrimafaage
(-2 "o (n3) A=) +(n-2) "(-s)

If t>s,then

t(l-s)"? +t,B(1— s)'"° (t-s)"
Gt,s)  (n-2)! a(n-23)! (n-1!
G(Ls) (1-972  (1-9"3 (1-9m1
n-2)!  a(n-3)! (n-1)!
_(n-2(n-DA(A-9)" +at(n-D(1-s)"*~e(t -s)""

2>
(n-)(n-2)B(1-s)"*+a(n-1)(1-s)"*—a(@-s)"*
The proof is complete.

Solution in the cone

In this section, we will apply Krasnosalskii's fixed-point theorem to the

eigenvalue problem (1.1), (1.2). We note that u(t)is a solution of (1.1), (1.2) if and
only if

1
ut)=A41 jG(t, s)a(s) f (u(s))ds, 0<t<1. (3.1
0
For our constructions, we shall consider the Banach space X =C[0,]] equipped

with standard norm|juf = ror<|2>l<|u(t)| ue X . Defineacone P by



14 SN. Odda

P={ue X| u(t) =0, u(t) > q(t)|u], te[01]}
It is easy to see that if ue P, then |u|=u(l). Define an integral operator
T:P— Xby

Tu(t) :/IJG(t,s)a(s) f (u(s))ds, 0<t<l ueP. (3.2
0
Notice from (2.5) that, forue P, Tu(t)>0o0n [0,]] and

Tu(t) = l]G(t, s)a(s) f (u(s))ds
> 2q(t) [G(L,s)a(s) f (u(s)) ds

> Aq(t) max ljG(t, s)a(s) f (u(s))ds

=q(t) T ul.
Thus T(P) c P. In addition, standard arguments show that T is completely

continuous.
Following [3,6], we define some important constants:

1 1
A= [GL9)a(9)q(s)ds, B=[G@9)a(s) ds,
0 0
F, = limsup ﬂ f, = liminf w
u—0" u u—0" u
F.=Ilimsup ﬂ f_=Iliminf T
U—>+oo u U—>+oo u
Here we assume that ﬁ:Oif f_ =oc and =oo if F;=0 and 1 =0if
oo 0 0
1 .
fp=ccand ——=o0 if F_ =0
BF,
Theorem 3. 1. Supposethat Af_ > BF,. Thenfor each Ae (ﬁ, BT: ) the problem
oo 0

(2.2) and (1.2) has at |east one positive solution.

Proof: By the definition of F;, we see that there exists anl, >0, such that
f(u)<(F,+&)uforO<u<l,. If ue P with|ju| =1, we have
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Tul=Tuw
=1 ]'G(L s)a(s) f (u(s))ds

< A(F,+&)|ulB
Choose & >O0sufficiently small such that(F,+&)AB<1. Then we
have |Tu|<u.

Thusif welet Q, ={ue X|Ju|<I.}, then [Tu|<ufor ue PnoQ;.

Following Sun [3]. we choosec € (O, %) , such

that /1[( f.—¢) jG(J, s)a(s)q(s) ds] >1. There existsl, >0, such that
0
f(u)=(f.—¢g)ufor u>l,.If ue P with|u|=1,, we have

[Tu]=Tuw® =2[Gws)a(s) f (u(s)ds

> /1le(], s)a(s) (f. —&e)u(s)ds

> A(f. —&)|ul A
Choose &>O0sufficiently smal such that(f,-&)AA<1. Then we
rave [Tu] 2|l
LetQ, ={ue X ||u] <1,}, thenQ, c Q. and [Tu|>uforue PnoQ, .

Condition (H1) of Krasnoselskii’s fixed-point theorem is satisfied. So there exists
afixed point of T inP . This completes the proof.

Theorem 3. 2. Supposethat Af, >BF_. Thenfor each Ae (ﬁ,é) the problem
0

oo

(1.2), (1.2) has at least one positive solution.

Proof: From the definition of f,, we see that there exists anl, >0, such that
f(u)=(f,—¢€)ufor O<u<l. If ue P with|u|=1,, we have

[Tul=Tuw®
= lle(L s)a(s) f (u(s))ds

> A(f,—€)|u|A
Choose &> Osufficiently small such that(f,—€)AA>1, then |Tul>|u|for
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ue PMoQ,.
By the same method, we can see that, if ue P with|u|=1,, then we have

[Tu<|u| forue Pnog, .

Condition (H2) of Krasnoselskii’s fixed-point theorem is satisfied. So there exists
afixed point of T inP . This completes the proof.

Theorem 3.3. Suppose that AB f (u) <u forue (0,) . Then the problem (1.1), (1.2)
has no positive solution.

Proof: Following [1,6], assume to the contrary that u is a positive solution of (1.1),
(1.2). Then

u@) = /I]'G(], s)a(s) f (u(s))ds< %]G(L s)a(s)u(s)ds< &Bl) le(], s)a(s)ds<u(l).
Thisois acontradiction and comp(;l etes the proof. O

Theorem 3 .4. Suppose that A Af (u)>u forue (0,e). Then the problem (1.1), (1.2)
has no positive solution.

Proof: Assumeto the contrary that u is apositive solution of (1.1), (1.2). Then
1 1 1
u®) =4 [G@a g)a(s) f (u(s)ds> % [e9ag)u(s) dsz"—ﬂ' [e9a(s) a9 ds=u).
0 0 0
Thisis acontradiction and completes the proof.

Example 3.5: Consider the boundary value problem

u®(t)+ 4 (10s%+2) 7‘:2:1“ (8+sinu)=0 (33)
u(0) =u"(0) =u”(0) =u“(0) =0, 7u'+3 u'@)=0 (3.4)

ThenF,=f,=8, F_ =63, f_=49, and 8u<f (u) <6 . By  direct
calculations, we obtain that A =0.0957341 andB =0.3047619. Since the genera
formfor aand B are

_ 960+ 2n(120+n(19+3n))

A= if n>-2
7(3+n)Gamma[2+n]
5o 232+2n(31+n(10+3n)) o
7(2+n)Gammal[1+n]

From theorem 3.2 we see that if A€ (0.2131754, 0.4101562) then the problem
(3.3), (34) has a positive solution. From theorem (3.3) we have that if
A < 0.0520325then the problem (3.3), (3.4) has no positive solution. By theorem
(3.4), if 41>0.983415then the problem (3.3), (3.4) has no positive solution.
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