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Abstract 
 

Super infection has an impact on the disease dynamics for some infectious 
diseases. As a consequence, in this paper super infection of an SI type 
epidemic model has been studied for two strains pathogen. Moreover, the 
density dependent infectious rate is considered as the spread of infectious 
disease depends on the density of the population. It has shown the disease free 
equilibrium is locally asymptotically stable if 2,1,10 =<ℜ kk  and unstable if 

either of   10 >ℜ k . The global stability at disease free equilibrium has been 

shown using Lyapunov function. It has also been shown that under which 
conditions the boundary endemic steady states 

1E  and 
2E  are locally 

asymptotically stable and unstable. For coexistence endemic steady state, 
stability is shown with numerical simulation. In this paper, some numerical 
simulations have been done through Mat lab program. 
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1. Introduction 
Infectious disease is a great issue throughout the world. According to 
UNAIDS/WHO, there are over 33 million people living with only HIV and AIDS 
worldwide. Super-infection is defined when a person gets infected by one strain of 
pathogen and after time gets infected with a second and different strain of pathogen. 
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Many authors have already studied epidemic models with two diseases such as AIDS 
and tuberculosis [2, 3] describes two strains of one disease present in the population, 
influenza or tuberculosis, for instance [4-6]. In realistic situation the super infection 
occurs   mainly the case of sexually transmitted disease (STD) or intravenous drug 
user (IVDU) such as HIV/AIDS and gonorrhea [1]. Therefore, we propose an SI type 
epidemic model considering super infection, especially HIV for two strains. Many 
doctors and researchers [7, 8, 10] have already given the practical evidence that super 
infection occurred in HIV through laboratory test. In the 7th annual conference on 
February 2, 2000 on Retroviruses and Opportunistic Infections [10], Dr. Jonathan 
Angel presented documentation regarding a suspected infection of a super strain of 
HIV-1. This "super strain" is resistant to all current highly active anti –retroviral 
therapy (HAART) regimens, and leads to rapid advance of HIV disease in the infected 
person. Dr. Angel described a situation where one person (Patient A) with non-
progressive HIV infection, was super-infected by a second person (Patient B) with an 
HIV infection containing several drug resistant mutations in their virus.  He reported 
in his study, patient A met patient B in 1997 and they began having a relationship. 
This relationship included unprotected sexual intercourse since both of them were 
already HIV positive. During the course of their relationship, patient A whose HIV 
had been non-progressive for several years, suddenly experienced a rapid decline in 
CD4 counts and a dramatic increase in viral load. Following initiation of HAART, 
which included a protease inhibitor, patient A failed to respond to treatment. Blood 
samples were taken from both patients A and B. The samples were then compared to 
determine if patient A had been infected with a super-resistant strain of HIV from 
patient B. A phylogenetic analysis of the blood samples identified a positive 
correlation between the point mutations in the virus in both patient A and B, leading 
to the conclusion that patient A was very likely infected with a resistant strain of HIV-
1 by patient B. Another evidence of dual HIV infection in humans appeared in 2002. 
A report in the Journal of Virology in August of that year strongly suggested super 
infection in  two injection drug users (IDUs) from Thailand (one female, one male) 
[8]. 
 There are several concerns if a person gets super-infection with two different 
strains of HIV, which apparently can occur sexually or through IVDU: (1) one virus 
may be a more virulent or potent virus than the other and this may make a person 
sicker and develop HIV-related symptoms; (2) viral load may increase and CD4 count 
might decline after becoming infected with a second virus;  (3) one of the viruses may 
be a drug resistant virus and may prevent the patient from responding to HIV-
treatment. For instance, a patient was infected with a multi-drug resistant virus 
(MDR) initially and later it appears super-infected with a wild-type virus [7]. 
Subsequent to initial HIV-infection the patient reported an unprotected sexual 
encounter after which his viral load increased. When the MDR will emerge, he will 
fail therapy. In our model, we assume that there is no permanent recovery by strain- 1 
and strain -2 respectively but some immune response is established temporarily by 
both strains. For convenient, we assume in our model strain-1 is only super infected 
by strain-2.  That means when an HIV infected individual infected by strain-1 then 
after treatment/vaccination he gets some temporary immune response and after some 
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times he super infected by strain-2. Because the HIV virus changes (mutates) so 
rapidly, it has created many different strains and will likely continue to create new 
ones. This complicates efforts to develop a vaccine for AIDS, because a vaccine to 
produce immunity to one strain may not protect against a different strain. We also 
assume that there is no strain specific disease caused death rate. 
 
 
2. Mathematical Model 
Let S , 1I , 2I  and N denote the  numbers of susceptible, infected with strain-1, 
infected with strain-2, and total population .Our model consists of a system of four 
differential equations. 
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 Here  μ  denote the birth rate of susceptible population and  δ  denote the death 
rate for each compartment. Here we consider the density dependent incidence rate. 

1β is the transmission coefficient for stain-1, 2β is the transmission coefficient for 
strain- 2, and 12β  is  the transmission coefficient for  super infection of strain-1 

population  by strain-2.  
 By making non dimensional, it is convenient to convert the system of differential 

equations (2.1) using the differential equation for N  and 
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 Here the domain D is positively invariant, because no solution paths leave through 
any boundary. Since paths can not live D, therefore solution exists for all positive 
time. Thus the model is mathematically and epidemiologically well posed. Now, 
through out this article we will analyze the model (2.2) 
 
 
3. Equilibria and Basic reproduction number 
The system (2.2) has several equilibria:  when disease is absent from both strains 
called disease free equilibrium, when disease is present either one or both strain called 
endemic equilibrium. Before going to analyze the stability of equilibria of the system 
(2.2), we find the basic reproduction number. The system (2.2) has a disease free 
equilibrium )00,1(0 =E  . Taking the infected compartments to be 1i  and 2i , and 

using the idea from  [12], we obtain from the model (2.2) 
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 The matrix F   is non negative and is responsible for new infections, while the 
matrix  V  is invertible and is referred to as the transmission matrix for the model 
(2.2) 
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 Thus the next generation matrix K  has two positive eigen values. Using the next 
generation matrix approach [12], we obtain basic reproductive numbers associated 

with strain-1 and strain-2 are 
γδ

β
+

=ℜ 11
0 and   

γδ
β
+

=ℜ 22
0  respectively. 

 These numbers give the number of secondary infective cases of the disease 
produced by an individual infected with strain-1, strain-2 during his/her effective 
period when introduced in a population of susceptible.Consequently, the basic 
reproductive number associated with the model (2.2) is the maximum of the two 
strains, that is { }2

0
1
00 ,max ℜℜ=ℜ .Hence the system (2.2) has a disease free equilibrium 

if { } 1,max 2
0

1
00 <ℜℜ=ℜ , and endemic equilibrium if  { } 1,max 2

0
1
00 >ℜℜ=ℜ . 
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4. Disease-free equilibrium and its stability analysis 
In this section the analysis of the disease free equilibrium for the system (2.2) and its   
stability is performed. Consideration of stability of a disease- free steady state gives 
certain conditions under which disease will die out or stay in the population. We have 
the following theorem 
 
Theorem 4.1: The disease- free equilibrium )0,0,1(0 =E is locally asymptotically 

stable if 2,1,10 =<ℜ kk , and unstable if   either of   10 >ℜk . 

 
Proof:  To prove this Theorem, we have the  follwing Lemma 
 
Lemma 4.1: If F is non negative and V is a non singular M matrix then 

( ) 11
0 <=ℜ −VFρ   iff   all the eigen values of  ( )VF −  have negative real parts (For 

Proof see, [12]). 
 Here, we observe that F is non negative and V  is non singular M  matrix since 

off diagonal elements of V  are zero. 
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 Hence by lemma 4.1, the eigen values of ( )VF −  matrix are negative iff  
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completes the proof of the theorem. 
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Global stability of disease free Equilibrium 
Now we want to show that the disease free equilibrium is globally asymptotically 
stable. To prove this: 
 Consider the Lyapunov function              
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 Since at disease free equilibrium 2,1,10 =<ℜ kk . Equality holds only at the 

equilibrium point )0,0,1(0 =E .Hence  ))(),(( 21 titiV  is a strictly Lyapunov function. 

Therefore,   disease free equilibrium is globally asymptotically stable in D . 
 
 
5. Endemic equilibria and its stability 
In this section, we analyze endemic equilibria for the system (2.2). The non zero 
steady –states can be present if there is only infected by strain-1, only strain-2 or both 
strains. When only one strain is present we call it boundary endemic equilibrium point 
and when both strains are present we call it coexistence endemic equilibrium point. 
But the expression for coexistence endemic steady state of the model (2.2) can not be 
obtained analytically; therefore stability analysis of coexistence endemic steady state 
is shown by numerical simulation using Mat lab. The model (2.2) has two boundary 
endemic equilibrium states which are  
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Theorem 5.2:  The boundary endemic steady state 2E  is locally asymptotically stable 
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6. Result and Discussion 
In section 4 & 5, some results have been shown analytically for disease free and 
boundary endemic steady states. In section 6, some numerical simulations have been 
done for these steady states. Moreover the expression for coexistence endemic steady 
state of the model (2.2) can not be solved analytically (coexistence steady state can be 
solved using Maple software); therefore stability analysis of coexistence endemic 
steady state is shown here by numerical simulation for different parameter values. It 
has shown analytically the disease- free equilibrium )0,0,1(0 =E is locally 

asymptotically stable if 2,1,10 =<ℜ kk , and unstable if   either of   10 >ℜk , and 

disease still exists. Numerical simulation also shows when  10 <ℜk   then disease dies 

out and equilibrium state is stable (fig: 6.1). 
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Figure 6.1: Parameter values are 0005.0,09.0,012.0,010.,02.0 2121 ===== δβββμ , 

]1000,0[,1.0)0(,2.0)0(,60.)0( 21 ==== tiis .              
 
 
 From the parameter values, 15.01

0 <=ℜ  and 16.02
0 <=ℜ . It has been observed 

from fig.6.1, initially 1.0)0(,2.0)0( 21 == ii and 1i and 2i goes to zero when time 
increase. Therefore there is no population in infective class and disease eventually 
dies out and disease free equilibrium is stable. 
 

 

 
 

Figure 6.2: Parameter values are 0005.0,009.0,012.0,0362.,02.0 2121 ===== δβββμ , 

]2000,0[,2.0)0(,1.0)0(,56.)0( 21 ==== tiis . 
 
 
 From the parameter values, 181.11

0 >=ℜ  and 16.02
0 <=ℜ .It has been observed 

from fig.6.2, initially 2.0)0(,1.0)0( 21 == ii and 2i goes to zero when time increase 

but 1i  still exists in the population. Therefore, there is some population in infective class 

for 1i , so disease does not die out completely and this steady state is unstable. 
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Figure 6.3: Parameter values are 006.0,004.0,009.0,05.,02.0 2121 ===== δβββμ , 

]2000,0[,2.0)0(,08.0)0(,70.)0( 21 ==== tiis .              
 
 
 Here  15.21

0 >=ℜ , 145.02
0 <=ℜ ,  21 ββ >   and initially 2.0)0(,08.0)0( 21 == ii . 

It has been observed from fig.6.3, 2i goes to zero when time increase but 1i  still 

exists in the population, even though initially 12 ii > . Therefore, boundary endemic 

steady state 1E  is locally asymptotically stable. 
 
 

 
 
Figure 6.4: Parameter values are 006.0,004.0,05.0,009.,02.0 2121 ===== δβββμ , 

]2000,0[,2.0)0(,08.0)0(,70.)0( 21 ==== tiis .              
  

Here  145.01
0 <=ℜ , 15.22

0 >=ℜ ,  21 ββ <   and initially 2.0)0(,08.0)0( 21 == ii . 

It has been observed from fig.6.4, 1i goes to zero when time increase but 2i  still 
exists in the population, even though all the parameter values in fig. 6.4 are same as 
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fig. 6.3 except  1β  and 2β  .Therefore, boundary endemic steady state 1E  is unstable  

when 21 ββ < . 
 

 
 

Figure 6.5: Parameter values are 0006.0,004.0,06.0,05.,02.0 2121 ===== δβββμ , 

]4000,0[,2.0)0(,08.0)0(,70.)0( 21 ==== tiis .              
 
 
 From parameter values 15.21

0 >=ℜ , 10.32
0 >=ℜ , 12 ββ >  and initially 

2.0)0(,08.0)0( 21 == ii . It has been observed from fig.6.5, 1i goes to zero when 

time increase but 2i  still exists in the population and it maintains an equilibrium state. 

Therefore, boundary endemic steady state 2E  is locally asymptotically stable. 
 

 
 

Figure 6.6: Parameter values are 0006.0,004.0,04.0,06.,02.0 2121 ===== δβββμ  

]4000,0[,2.0)0(,08.0)0(,70.)0( 21 ==== tiis . 
  
 From parameter values 10.31

0 >=ℜ , 10.22
0 >=ℜ , 21 ββ >  and initially 

2.0)0(,08.0)0( 21 == ii . It has been observed from fig.6.6, 2i goes to zero when 
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time increase but 1i  still exists in the population, even though all the parameter values 

in fig. 6.6 are same as fig. 6.5 except  1β  and 2β  .Therefore, boundary endemic 

steady state 2E  is unstable  when 12 ββ < . 
 
 

 
 

Figure 6.7: Parameter values are 006.0,08.0,013.0,11.,01.0 2121 ===== δβββμ  

]2000,0[,05.0)0(,03.0)0(,85.)0( 21 ==== tiis . 
 
 
 From parameter values 1111

0 >=ℜ , 13.12
0 >=ℜ  and initially 1 2(0) 0.03, (0) 0.05.i i= =  

It has been observed from fig.6.7, 1i and 2i do not go to zero when time increase 

but 1i  and still 2i exists in the population. Therefore, coexistence endemic steady 
state is  stable. 

 

 
 

Figure 6.8: Parameter values are 0005.0,09.0,102.0,11.,02.0 2121 ===== δβββμ , 

]2000,0[,1.0)0(,2.0)0(,60.)0( 21 ==== tiis .              
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      Here 15.51
0 >=ℜ , 105.12

0 >=ℜ  and initially 1.0)0(,2.0)0( 21 == ii .It has been 

observed from fig.6.8, for different parameter values 1i and 2i do not go to zero 

when time increase but 1i  and still 2i exists in the population. Therefore, 
coexistence endemic steady state is stable. Hence, it has been observed from fig 6.7 
and 6.8 that for different parameter values coexistence endemic state exist and stable. 
 
 
7. Conclusion  
Numerical simulations have been performed in section 6 and it has been observed that 
super infection has a great impact on the result of numerical simulations (i.e. 
dynamics of the disease of HIV), because it has changed  the dynamics of the disease 
due to the change  of the value of  super infection  transmission coefficient 21β . 
Therefore, from the analytical results in section 4 & 5, and numerical simulations in 
section 6, the following conclusion may be drawn: 
 1. Disease free equilibrium is locally asymptotically stable and globally 
asymptotically stable if   2,1,10 =<ℜ kk , and unstable if   either of   10 >ℜk . 

 2. The boundary endemic steady state 1E  is locally  asymptotically stable  if    

 21 ββ >    and    ( ) ( )1
1 1

0
1

21121
0

−ℜ>−
ℜ β

μβββ , and unstable if  21 ββ < . 

 3. The boundary endemic steady state 2E is locally  asymptotically stable for the 
following cases: 
  (i)    12 ββ >   

  (ii)   ( ) 021 >− ββ  and  ( ) ( )1
1 2

0
2

21212
0

−ℜ<−
ℜ β

μβββ  ,   

and unstable if  

 ( ) ,021 >− ββ and   ( ) ( )1
1 2

0
2

21212
0

−ℜ>−
ℜ β

μβββ  

 4. From fig 6.7 and 6.8, it has been observed that for different parameter values, 
the coexistence endemic steady state exists and stable.                        
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