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Abstract 
 

In this paper a new integral transform namely Elzaki transform was applied to 
solve linear ordinary differential equations with constant coefficients. 
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Introduction 
ELzaki Transform is derived from the classical Fourier integral. Based on the 
mathematical simplicity of the Elzaki transform and its fundamental properties. 
 Elzaki transform was introduced by Tarig ELzaki to facilitate the process of 
solving ordinary and partial differential equations in the time domain. 
 Typically, Fourier, Laplace and Sumudu transforms are the convenient 
mathematical tools for solving differential equations, 
 Also ELzaki transform and some of its fundamental properties are used to solve 
differential equations. 
 A new transform called the ELzaki transform defined for function of exponential 
order we consider functions in the set A defined by:  
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 For a given function in the set A, the constant M must be finite number, 1 2,k k   
may be finite or infinite. 
 The ELzaki transform denoted by the operator E (.) defined by the integral 
equations  
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 The variable v in this transform is used to factor the variable t  in the argument of 
the function .f  this transform has deeper Connection with the Laplace transform. We 
also present many different of properties of this new transform and Sumudu 
transform, few properties exptent. 
 The purpose of this study is to show the applicability of this interesting new 
transform and its efficiency in solving the linear differential equations. 
 
 
ELzaki Transform of the Some Functions 
For any function ( ) ,f t  we assume that the integral equation ( )2 exist. The Sufficient 

Conditions for the existence of ELzaki transform are that ( )f t  for 0t ≥  be piecewise 

continuous and of exponential order, Otherwise ELzaki transform may or may not 
exist  
 In this section we find ELzaki transform of simple functions.  
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 Integrating by parts to find that: ( ) 3t vΕ =  

 In the general case if 0n >  is integer number, then.  
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 This result will be useful, to find ELzaki transform of:  
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Theorem: 

Let ( )T v is the ELzaki transform of ( )( ) ( ) .E f t T v⎡ ⎤=⎣ ⎦ then: 
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Proof:  
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Integrating by parts to find that:  
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( )ii Let ( ) ( ) ,g t f t′= then:  
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we find that by using (i),  
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(iii) Can be proof by mathmatical induction  
  
 
Application of ELzaki Transform of Ordinary Differential 
Equations. 
As stated in the introduction of this paper, the ELzaki transform can be used as an 
effective tool. For analyzing the basic characteristics of a linear system governed by 
the differential equation in response to initial data. The following examples illustrate 
the use of the ELzaki transform in solving certain initial value problems described by 
ordinary differential equations.  
 
 
Consider the first-order ordinary differential equation.  

  ( ) , 0
dx

p x f t t
dt

+ = >   (3) 

 With the initial Condition 
  ( )0x a=   (4) 
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 Where p  and a  are constants and ( )f t  is an external input function so that its 

ELzaki transform exists.  
 Applying ELzaki transform of the equation (3) we have: 
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 The inverse ELzaki transform leads to the solution.  
 The second order linear ordinary differential equation has the general form.  
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 The initial conditions are 
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 Are constants. Application of the ELzaki transforms b  and , ,p q a  where to this 
general initial value problem gives 
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 The use of ( )6  leads to the Solution for ( )y v  as 
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 The inverse transform gives the solution. 
 
Example (1):  
Consider the first order differential equation 

  ( )0 , 0 1
dy

y y
dx
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 Take ELzaki transform to this equation gives:  
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 Where ( )yΕ is the ELzaki transform of the function ( )y x , 

 
Example (2): 
Solve the differential equation 
  ( )2 , 0 1y y x y′ + = =  

 
 ELzaki transform of this equation is  
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 The inverse transform of this equation gives the Solution:  

  ( ) 21 5 1

2 4 4
xy x x e −= + −  

 
Example (3): 
Let us consider the second–order differential equation 
  ( ) ( )0 , 0 0 1y y y y′′ ′+ = = =  

 
we take ELzaki transform to this equation gives  

  ( ) ( )2

1
1 0y y v

v
Ε − + Ε − =  

 
 We solve this equation for ( )yΕ to get 
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v v
y

v v
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 The inverse ELzaki transform of this equation is simply obtained as  
  ( ) sin cosy x x x= +  

 
Example (4):  
Consider the following equation  
  ( ) ( )3 2 0 , 0 1 , 0 4y y y y y′′ ′ ′− + = = =  

 
 Take ELzaki transform of this equation we find that: 
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 Then the solution is ( ) 22 3x xy x e e= − +   

 
Example (5):  
Let the second order differential equation: 

  9 cos 2y y t′′ + =  if (0) 1 , ( ) 1
2

y y
π= = −  

 
 Since (0)y′  is not known, let (0)y c′ = . 
 Take Elzaki transform of this equation and using the conditions, we have 
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 We can write this equation in the form, 
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 And invert to find the solution. 
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Example (6):  
Solve the differential equation: 
  33 2 4 , (0) 3 , (0) 5ty y y e y y′′ ′ ′− + = = − =  
 
 Taking the Elzaki transforms both side of the differential equation and using the 
given conditions we have, 
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 Or 

  2 4 2 9
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1 2 1 3 1
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 Inverting to find the solution in the form. 
  2 3( ) 4 2 9t t ty t e e e= + −  
 
Example (7): 
Find the solution of the following initial value problem: 
  4 9 , (0) 0 , (0) 7y y t y y′′ ′+ = = =  
 
 Applying Elzaki transform of this problem and using the given constants we get, 

 
5 3 3
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1 4 1 4 1 4

T v v v v
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 Inverting to find the solution in the form: 
  ( ) 3 2sin 2y t t t= +  
 
 
Conclusion 
The definition and application of the new transform " Elzaki transform" to the 
solution of ordinary differential equations has been demonstrated;  
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