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Abstract 
 

The ELzaki transform of partial derivatives is derived, and its applicability 
demonstrated using four different partial differential equations. In this paper 
we find the particular solutions of these equations. 
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Introduction 
The differential equations have played a central role in every aspect of applied 
mathematics for every long time and with the advent of the computer, their 
importance has increased father. 
 Thus investigation and analysis of differential equations cruising in applications 
led to many deep mathematical problems; therefore, there are so many different 
techniques in order to solve differential equations.  
 In order to solve the differential equations, the integral transforms were 
extensively used and thus there are several words on the theory and applications of 
integral transforms such as the Laplace, Fourier, Mellin, Hankel and Sumudu, to name 
but a few. Recently, Tarig Elzaki introduced a new integral transform, named the 
ELzaki transform, and further applied it to the solution of ordinary and partial 
differential equations.  
 In this paper we derive the formulate for the ELzaki transform of partial 
derivatives and apply them in Solving five types of initial value problems. Our 
purpose here is to show the applicability of this interesting new transform and its 
effecting in solving such problems.  
 
 
Definition and Derivations the ELzaki Transform of Derivatives 
The ELzaki transform of the function ( )f t  is defined as  
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 To obtain the ELzaki transform of partial derivatives we use integration by parts 
as follows:  
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 We assume that f is piecewise continuous and is of exponential order.  
 Now  
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 By using equation (2) we have  
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 We can easily extend this result to the nth partial derivative by using mathematical 
induction.  
 
 
Solution of Partial Differential Equations 
In this section we solve first order Partial differential Equations and the Second order 
partial differential equation, wave equation, heat equation Laplace's and Telegraphers 
equation which are known as four 
 Fundamental equations in mathematical physics and occur in many branches of 
physics, in applied mathematics as well as in engineering. 
 
Example 1: 
Find the solution of the first order initial value problem: 
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and y  is bounded for 0 , 0.x t> >  

 Let Y be the ELzaki transform of .y then, taking the ELzaki transform of ( )6  we 

have  
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 This is the linear ordinary differential equation 
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 Since Y  is bounded, c  Should be zero .Taking the inverse ELzaki transform we 
have: 

  ( ) 2 3 2 3, 6 . 6t x t xy x t e e e− − − −= =  
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Example II: 
Consider the Laplace equation:  
  ( ) ( )0 , ,0 0 , ,0 cos , , 0xx tt tu u u x u x x x t+ = = = >  (7) 

 
 Let ( )T v  be the ELzaki transform of u .Then, taking the ELzaki transform of 

equation ( )7 we have: 
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 This is the second order differential equation have the particular, solution in the 
form 
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 If we take the inverse ELzaki transform for Eq. ( )8 , we obtain solution of Eq ( )7  

in the form. 
  ( ), cos sinhu x t x t=  

 
Example III: 
Solve the wave equation: 
  ( ) ( )4 0 , ,0 sin , ,0 0 , , 0tt xx tu u u x x u x x tπ− = = = >   (9) 

 
 Taking the ELzaki transform for Eq ( )9 and making use of Conditions we obtain.  
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 Now we take the inverse ELzaki transform to find the particular solution of ( )9  in 

the form  
  ( ), sin cos 2u x t x tπ π=  
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Example IV: 
Consider the homogeneous heat equation in one dimension in a normalized form:  

  ( )4 , ,0 sin , , 0
2t xxu u u x x x t
π= = >   (10) 

 By using the ELzaki transform for Eq ( )10  

 We can obtain 
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 Solve for ( ),T x v  we find that the particular solution is 
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 And similarly if we take the inverse ELzaki transform for Eq ( )11 , we obtain the 

Solution of ( )10 in the form. 
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Example V: 
Consider the telegraphers equation: 
  2( , ) 2 ( , ) ( , ) , 0 1 , 0tt t xxu x t u x t u x t x tα α+ = < < >  (12) 

 
 With the initial conditions: 
  ( ,0) cos , ( ,0) 0tu x x u x= =   (13) 

 
Solution: 
Take Elzaki transform of Eq (12) we get: 
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 Substituting Eq (13) into Eq (14) we have: 
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particular solution of (12). 
 
 We take the inverse of Elzaki transform we find that:  
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