
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 15 (2017) pp. 5040-5046

© Research India Publications. http://www.ripublication.com

5040

An Efficient Inline Data Deduplication with Data Relationship Manager for

Cloud Storage

Venish A1,* and Sivasankar K 2

1Computer and Engineering, Noorul Islam University, Kumaracoil, Tamilnadu, India.

Orcid id: 0000-0003-0742-8248

2Information Technology, Noorul Islam University, Kumaracoil, Tamilnadu, India.

Orcid id: 0000-0001-6963-7905

Abstract

In the current digital and cloud world, the data handling is a

biggest challenge for all the service providers. One way or

other way we need more storage backup system to handle the

disaster recovery. For the high performance, the video and

audio streaming application, database application, multimedia

applications need more memory and high speed process. Using

data deduplication concept in the storage system, we can

reduce memory space requirement and can improve system

performance.

This paper is focusing on Metadata management and

Replacement Algorithm to provide the high throughput and

minimal resource utilization. By implementing LIRS

replacement algorithm in the deduplication system for caching,

it reduces the IO access compare to other replacement

algorithm. Also this system improves the LIRS Meta data

lookup speed using Data Relationship Manager. We have

explained the complete Architecture, Write and Read process,

Algorithm implementation and discussed the different

experiment results.

In our study the LIRS with Data Relationship Manager

improves the time taken for the deduplication and reduces the

IO access. We compared 4000 files with 5 different data

pattern, the result shows the LIRS with Data Relationship

Manager works well on the weak locality data pattern. The

result clearly shows that without relationship manager, LIRS is

taking much more time for the deduplication. The Time and

Workload pattern comparison shows the result is improved

and it reduces the memory access when we have Data

relationship manager. LIRS with Data relationship manager

improves the deduplication efficiency and throughput.

Keywords: Deduplication; Cloud Storage; LIRS; Data

Relationship Manager; Inline Deduplication;

INTRODUCTION

All the replacement algorithm is based on the Recency or

Frequency. Recency is focusing the last reference time

whereas the frequency is focusing a block reference count.

LIRS is a recency based algorithm. When file read request

comes, before it goes to secondary memory, first the request

goes to the cache. If file is there, then it is called as ‘HIT’, if

file is not there then it is called as ‘MISS’. The good

replacement algorithm is decided based on the hit ratio. There

are different components involved in the data deduplication

system. First method is Chunking-the incoming data splits in

to smaller chunks using fixed or variable chunking methods.

Hashing is Assigning unique identification value or fingerprint

to each of these chunk using hash algorithm. Once hashing is

over the duplication detection method checks the existing

stored fingerprint index for deduplication detection. The final

steps is Index Updating & Storing. If the index is exists then

the chunk is replaced with a reference pointer or the chunk is

written to the disk as a new unique data chunk.

A. Chunking Method:

Chunking method splits the data in to smaller chunk using

different chunking algorithm. There are two level of chunking,

one is file level and another one is block level. In the file level,

the hash value is created for the complete file whereas the

block level, the file is divided into fixed size chunk or variable

size chunk. Fixed size chunking algorithm divides the data

into fixed size such as 4KB, 8KB, and 16KB and so on.

Variable size chunking algorithm can be in the form of content

aware chunking, delta encoding and sliding window which

divides the data into variable size based upon the set of rules.

Chunking is very important key factor in the deduplication

system. Wrong selection of chunking may affect the

duplication ratio and system performance.

B. Hashing Method:

Once chunking is over, the fingerprint or hash value is created

by using different hashing algorithm, such as MD5, SHA and

Robin Fingerprint for each chunk. In some sporadic cases, the

two different chucks may have same hash value. It is called

false positive ratio. So the system decides it is duplicate chunk

mailto:venish07@gmail.com
mailto:sivasankarniu@gmail.com

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 15 (2017) pp. 5040-5046

© Research India Publications. http://www.ripublication.com

5041

and adding only the reference point for the chunk, instead of

storing the second chunk. It causes data loss. To avoid this

issue, some of the study reveals that combination of the hash

algorithm and grouping the hash value can decrease the false

positive ratio [1].

C. Duplicate Detection:

In order to remove the duplicate data, hash index lookup or

comparison has to happen with existing stored hash value. The

metadata value of hash value is stored into the main memory

and secondary memory. First the hash value is compared with

main memory, if data not found the same value is compared

with secondary memory metadata. In the small scale system

the stored fingerprint value is less, so the comparison of index

value is not much complex and less time consume. But when

we implement the deduplication system in the large scale

storage system, we can expect the amount of fingerprint value

is higher. Apparently in this case the main memory cannot

hold all the index value, so we need external disk access to

read or write the fingerprint. When we access the disk for

fingerprint read or write, the performance of the deduplication

system also will go down. But we cannot avoid to store the

fingerprint in the disk for large scale storage system. There are

various studies carried over to improve the finger print lookup

and reduce the IO access by selecting correct replacement

algorithm or improving search criteria.

D. Index Updating & Storing:

If the fingerprint exists in the index table, the data chunk/block

is replaced with a pointer to data chunk/block. If the

fingerprint does not exist, the data is written to the disk as a

new unique data chunk and the entry is made in the index

table.

MOTIVATION

In the cloud storage environment, there is a lot of necessity to

handle the large amount data with minimal storage space and

less resource access. The data backup and data recovery also

should be taken care. So the deduplication system needs to

provide high throughput and good deduplication ratio. To

achieve this key factor the hashing and metadata management

is very important. Also unwanted main memory and disk

access hurts the deduplication performance very badly. So in

this system we concentrated to use the correct replacement

algorithm to decide the element movement between the main

memory and Meta data disk. The combination of the good

replacement algorithm and structured Meta data manager can

reduce the metadata search time and IO access. We

implemented the LIRS [4] algorithm with improved history

node data relationship manager. This approach provides

considerable results with different IRR value and DDR size.

In summary, this paper contributes inline deduplication,

overall structure of the system and LIRS Replacement

algorithm with Data relationship manager.

MATERIALS AND METHODS

The main objective of this system is to focus on deduplication

concept in the Inline Process and provide the effective solution

to handle the large amount of data within expected time.

This system is storing Metadata in the format of B-Tree and

using replacement algorithm (LIRS) to overcome the main

memory metadata overhead and disk seek problem. Also

provides good efficiency and disk throughput. It handles

Metadata effectively. Fig. 1 shows the system structure and its

components.

System Architectural overview.

Figure 1: The system overview.

A. Chunking Module:

Chunking module is responsible for the data chunk. This

system uses fixed size chunking with 8 KB. Each incoming

file is divided into 8 KB fixed size length.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 15 (2017) pp. 5040-5046

© Research India Publications. http://www.ripublication.com

5042

B. Scheduling Manager and Hashing Manager:

To speed up the hashing process, this system uses scheduling

and hashing manager for the parallel process. Once the data

passed through the chunking module, the chunked data are

moved into the scheduling manager. This scheduling manager

is using Round Robin algorithm which distribute the chunk

data to hashing manager. There are three hashing queue in the

hashing manager. Each hashing queue is responsible for

creating hash value for each chunk by using MD5 hashing

algorithm.

C. Design of Metadata Manager:

Metadata Manager: Metadata Manager is designed with

following important components.

File Manager: File manager is responsible to store File related

information and Metadata information. This file manager is

directly connected with the Metadata table. Most frequently

used metadata value is kept into the main memory, and least

used Metadata is swapped into Metadata disk by using

replacement algorithm to reduce the disk seek operation. Each

Metadata value is stored in hash table in the form of B-Tree.

The new incoming hash value is compared with B-Tree

through hash table. If the hash index is found in the B-Tree,

only the reference count is added, the data is not stored. If the

hash index is not found in the B-Tree, the hash index is added

into B-Tree in the Hash Table and the data is added into

storage disk.

Replacement Manager: This manager uses Heuristic based

replacement algorithm (LIRS) to reduce the main memory

Metadata overhead. This manager keep on checking the

allocated buffer memory size. Once it exceeds the threshold

value, this manager will flush the main memory metadata to

metadata disk and make some free space for new incoming

data in the main memory also accordingly changes the B-Tree

value. Fig 2. Shows the Replacement Manager overview and

the process.

Replacement Manager

LIRS

Data Access

History
Metadata Value

G
ro

u
p
 o

f

M
e
ta

D
a
ta

MetaData Values

(h1, h2, h3)

MetaData Manager

MetaData Disk

1 2

Figure 2: Replacement Manager Overview

The replacement manger is responsible for below

functionalities,

1. A Group of Metadata will be given as input to

Replacement Manager. The replacement manager

uses the Low Inter-Reference recency Set (LIRS)

algorithm to replace the data. This LIRS maintains

the Data access history and metadata value.

2. File manager will keep track of new and existing

metadata value along with file information.

3. We are maintain a hash table which will have all the

hash index grouping information, and all the index

value will be kept in the form of B-Tree. By storing

index value in the B-Tree, the comparison of existing

index with new index is very fast.

D. Algorithm Overview:

In our previous study [9] we explained the detail design of

LIRS and its Stack. LIRS has High Inter-reference Recency

(HIR) and Low Inter-reference Recency (LIR) set to keep

track of the Residence LIR and HIR chunks based on the Inter-

Reference Recency (IRR) value. This IRR value is calculated

based on the chunk access. The HIR element will be replaced

when new chunks comes in, the LIR element will not be

replaced until it moves to the HIR stack. LIRS has very

important History tracking functionality which is not in the

LRU replacement algorithm. This History Tree represents the

Non-Residence elements and arrange the elements in the B-

Tree format. All removed elements form the HIR and LIR set

will be traced in the History Tree and the corresponding data

of the element will be moved to the Metadata disk.

E. System Design and Implementation:

In our previous work [9] we implemented the LIRS and LRU

algorithm separately in deduplication system with different

workload pattern. The analysis of this implementation proves

that LIRS performance is higher than the LRU when we use

weak locality pattern and time taken for the deduplication is

lesser than the LRU. For the strong locality pattern LRU and

LIRS makes no difference.

The LIRS algorithm uses the history tree to track the recently

used indexes. In the write request, the incoming element index

is not found in the LIR and HIR stack of LIRS, the search goes

to LIRS history tree. If the element found in the history, then

the corresponding element will be given priority and will be

updated in the LIR and HIR stack of the LIRS. If the element

is not found in the History tree then the search request goes to

Metadata disk to perform the search operation for the

incoming element. So the Metadata disk read is required if the

element is not found in the History tree. But in the cloud

storage or big data process system, the search operation in the

Metadata disk affects the Deduplication performance heavily.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 15 (2017) pp. 5040-5046

© Research India Publications. http://www.ripublication.com

5043

To avoid the complete search operation for the each History

Miss index in the Metadata disk, we have implemented Data

Relationship rules which keeps track of Metadata disk index

location in the Metadata disk. If the incoming element search

is Miss in the history tree, then the index search is happening

on Data Relationship Tree, which is having the location where

the search operation has to perform to find out the index. In

this way we can avoid complete linear search in the disk and

we can navigate the particular position for the index search.

Fig 3 shows the write request with Data Relationship

Manager.

Figure 3: File write request flow with relationship manager

The existing linear search approach does complete search on

the Metadata disk which causes the disk seek performance. We

have implemented the Data Relationship tree to improve the

Metadata search performance. The Data Relationship B-Tree

stores the set of block location information based on the index

key. The incoming search index value is compared with Data

Relationship Tree before start the Metadata disk search. The

DR Tree search tells the possible search location based on the

incoming index and DR Tree block address. So the search will

happen on the particular Metadata disk location and can skip

the complete disk search.

F. File – WRITE & READ

When the file write request comes, this system divides the file

into fixed size chunk and Creates the hash value for each

chunk using MD5 Algorithm. It saves the Metadata value into

File Manager. To compare the new metadata value with

existing metadata value, it picks up the hash index from the

Hash Table and search it in the B-Tree. If this new index is

found in the B-Tree then add the reference value for that

index, if not found add to the B-Tree, the B-Tree will be

adjusted accordingly and it writes the file in to the file disk.

Fig. 3 shows the file write request with Data Relationship

Manager detailed process and Fig. 4 shows the element search

in the History and DRT.

When the file read requests comes, the search happens on the

metadata table to find out the file index and location. The

corresponding file related data will be picked and read out the

file from the disk.

Metadata Disk

History Tree

LIRS
Stack

HIR
Stack

Chunk
Write/
Read

Request

LIRS Block

1 2

Data Relationship
Tree

3

4

Figure 4: File search in History and DRT

RELATED WORK

There are many studies carried to improve the deduplication

system performance.

In our previous study, we have analysed the complete

deduplication system [8] and the different chunking methods

[10] as the chunking method is key and important steps in the

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 15 (2017) pp. 5040-5046

© Research India Publications. http://www.ripublication.com

5044

deduplication system. The fixed and variable chunking are

used or the combination of both also used to make the correct

chunking process. The next steps is to find the unique index

for the each chunk. There are various hashing methods to

identify the unique values [10]. We also analysed the different

replacement algorithm which are used in the deduplication

system. The LRU replacement algorithm is mainly used in all

the deduplication system [6, 7] to move the element based on

their accessibility. Hands [12] the segment based group uses

LRU, LFU (native) and LFU (Working set aware) replacement

algorithm. LRU is very easy to implement also provides good

results in the strong locality pattern, but in the weak locality

pattern it fails to provide the accurate deduplication results and

it affects the deduplication ratio. LIRS provides good result for

the weak and strong data pattern.

There are various studies to grouping the data before store or

before index comparison. By grouping the index or elements

the search would be bit faster and can reduce unwanted IO

access [11]. Routing chunk data in the correct cluster node

also yields the good deduplication ration. Cluster, Distributed

[5] and Cloud based [3] deduplication methods are improving

performance using cache mechanism. This approaches uses

LRU queue to decide the recent used elements [13]. Some of

the systems are using combination of Main Memory and

Flash-Memory. In this way the bottleneck of RAM usage can

be reduced, also the Flash-Memory is faster than the Hard

Disk and cheaper than the RAM [1]. The metadata indexes are

stored in the Flash drive to improve the index comparison

performance [2]

RESULT ANALYSIS

This model system, totally 4000 files used and each file size is

256 KB. By using multithread application we generated the

five different data pattern and analysed with the Work load,

Time taken for the Deduplication and the different DDR size.

This system consuming the 8K fixed size chunking model and

LIRS module is configured to allow 10000 LIR elements,

5000 HIR elements and 15000 History elements. This system

we ran in windows system with 1 TB 6 GBPS Seagate SATA

drive for data disk, 200 GB 6 GBPS Seagate SATA drive for

the metadata. We changed the size of the DDR size from 6 to

16.

A. Workload Experiment

We have selected the same data pattern which we used for our

previous study [9]. Based on the data frequency access, we

have categorized the five different data pattern for this

experiment.

Figure 5: Hit Ratio comparison for different workload and

different IRR value.

Pattern A – Large number of Hot spots, Pattern B – Multiple

Hot spots, Pattern C - Limited number of Hot spots with

random access pattern, Pattern D – Limited number of Hot

spots with sequential access pattern, Pattern E – Pure random

access pattern. To perform the WEAK LOCALITY process,

the Pattern C and Pattern D are selected. Hit ratio for these

different data pattern are various for the both LRU and LIRS.

The changing of IRR value in the LIRS also tested and the

results are captured. The same IRR value is tuned up to 20%

and noted the significant improvements.

The observation of the results Fig. 5 shows the LIRS provides

considerable improvements than LRU with Data Relationship

manager. The Data Relationship manager improves the search

efficiency and saving the time compare to the same LIRS.

B. Time Take for Deduplication

The standalone replacement module is used to perform this

experiment. We tested with and without Data Relationship

Manager for the LIRS replacement algorithm and compared

with LRU algorithm. The result shows that the LIRS with Data

Relationship Manager improves the time which taken for

deduplication process. The notable point for this experiment

Fig. 6 shows that the disk access is reduced for the Metadata

comparison in which the time taken for the process also

reduced. For the weak locality access pattern, the LIRS with

Data Relationship Manager can be a considerable option as

this complexity of deduplication time is very less. But the

LRU I taken bit more than the LIRU.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 15 (2017) pp. 5040-5046

© Research India Publications. http://www.ripublication.com

5045

Figure 6: Time taken for deduplication.

C. DDR Size Analysis

In this experiment, Fig. 7 we have analysed with different

DDR (RAM) size and tuning different IIR values between

10% and 20%. When we increase the DDR size the Meta Data

disk access is lesser than the previous experiment. Because the

Main memory can have more Meta data which reduces the

Meta data disk access. The result for the LIRS with Data

Relationship Manager is improved when compared to the

LIRS process.

Figure 7: DDR Analysis.

CONCLUSION

The good replacement algorithm decides the Deduplication

system performance, Ratio and Throughputs. The use of LIRS

for the weak locality access patterns provides the considerable

results and improve the Time and reduces the IO access.

Further improving the results we have identified the potential

changes on the LIRS algorithm by maintain the Data

Relationship Manager. This manager is responsible to keep

track of the Metadata disk saved indexes. The results shows

this implementation improves the results further for the weak

locality data pattern. The LRU algorithm is not suitable for the

data pattern like File Scanning, Looping Data Pattern and the

Different Frequencies Data Pattern. The LIRS algorithm

provides better results for these access pattern and can handle

large numbers of Meat Data effectively. LIRS with Data

Relationship Manger experiment results also improved than

the LIRS. Implementation of Date Relationship Manger

proves the efficiency and the time taken for the deduplication

is improved and can handle the more Metadata in the inline

data deduplication system.

Further improvement of the Data Relationship Manager also

possible. Using Flash or High speed drive for the Data

Relationship Manager can provide the improve results. Also

there is a scope of implementing this Manager in the cluster

system or different node system can improve the search

performance.

REFERENCES

[1] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2010.

ChunkStash: speeding up inline storage deduplication

using flash memory. In Proceedings of the 2010

USENIX conference on USENIX annual technical

conference (USENIXATC'10). USENIX Association,

Berkeley, CA, USA, 16-16.

[2] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2010.

FlashStore: high throughput persistent key-value store.

Proc. VLDB Endow. 3, 1-2 (September 2010), 1414-

1425. DOI=http://dx.doi.org/10.14778/1920841.19210

15.

[3] Frederik Armknecht, Jens-Matthias Bohli, Ghassan O.

Karame, and Franck Youssef. 2015. Transparent Data

Deduplication in the Cloud. In Proceedings of the 22nd

 ACM SIGSAC Conference on Computer and

Communications Security (CCS '15). ACM, New York,

NY, USA, 886-900. DOI:https://doi.org/10.1145

/2810103.2813630

[4] Jiang S, Zhang X (2002). “LIRS: An Efficient Low

Inter reference Recency Set Replacement Policy to

Improve Buffer Cache Performance”, In Proceeding of

(2002) ACM SIGMETRICS, June (2002), pp. 31-42.

[5] João Paulo and José Pereira. 2016. Efficient

Deduplication in a Distributed Primary Storage

Infrastructure. Trans. Storage 12, 4, Article 20 (May

2016), 35 pages. DOI: http://dx.doi.org/10.1145

/2876509

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 15 (2017) pp. 5040-5046

© Research India Publications. http://www.ripublication.com

5046

[6] Min J, Yoon D, Won Y (2011). “Efficient deduplication

techniques for modern backup operation,” IEEE

Trans. Comput., 60(6): 824-840.

[7] Srinivasan K, Bisson T, Goodson G, Voruganti K

 (2012). “idedup: Latency-aware, inline data

deduplication for primary storage,” in Proceedings of

the 10th USENIX conference on File and Storage

Technologies. USENIX Association, 2012.

[8] Venish A, SivaSankar K (2015). “Framework of Data

Deduplication: A Survey”, Indian J. Sci. Tech., 8(26).

[9] Venish A, SivaSankar K (2016). “HIDE - Heuristics

Based Inline Data Deduplication for Cloud Storage”,

Transylvanian Review, Vol. XXIV, No. 07, 2016.

[10] Venish A, SivaSankar K (2016). “Study of Chunking

Algorithm in Data Deduplication”, Proceedings of the

International Conference on Soft Computing Systems:

ICSCS 2015, Springer India, 2016, pp. 13-20.

[11] Wang L, Zhang X, Zhu G, Zhu Y, Dong X (2013). "An

Undirected Graph Traversal Based Grouping Prediction

Method for Data De-duplication," 2013 14th ACIS

International Conference on Software Engineering,

Artificial Intelligence, Networking and

Parallel/Distributed Comput. (SNPD), pp. 3-8.

[12] Wildani A, Miller EL, Rodeh O (2013). "HANDS: A

heuristically arranged non-backup in-line deduplication

system," 2013 IEEE 29th Int. Conf. Data Eng. (ICDE),

pp. 446-457.

[13] Yinjin Fu, Hong Jiang, and Nong Xiao. 2012. A

scalable inline cluster deduplication framework for big

data protection. In Proceedings of the 13th International

Middleware Conference (Middleware '12), Priya

Narasimhan and Peter Triantafillou (Eds.). Springer-

Verlag New York, Inc., New York, NY, USA, 354-373.

