
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 20 (2017) pp. 9942-9947

© Research India Publications. http://www.ripublication.com

9942

Development of Additional Functions in Scratch for Learning the

Fundamentals of Object-oriented Technology

Sung Wan Kim*

*Division of Computer and Mechatronics Engineering, Sahmyook University
Seoul 01795, Korea.

*Corresponding author: Sung Wan Kim, Ph.D.

Abstract

With the rapid increase in interest in software education,

block-type coding tools such as Scratch are actively being

employed as educational programming languages. Recently,

studies have been introduced on the learning of object-

oriented concepts using Scratch. However, because Scratch is

not a programming language that supports object-oriented

programming, it is not sufficient to facilitate consistent and

natural learning for beginners learning object-oriented

concepts. In this paper, we design and propose extended

functions to express the concepts of classes, objects, and

inheritance in Scratch, which are the most fundamental aspects

of object-oriented technology, and we describe an application

example. As a result of evaluating the usefulness of the

proposed functions through expert evaluation, we found that it

can be useful in software education for elementary school

students.

Keywords: Object-oriented Programming, Scratch, Software

Education, Educational Programming Language

INTRODUCTION

As software is recognized as a future engine of the national

growth, there is a growing interest in software education

around the world. At the core of software education is creative

thinking for the digital age, or in other words, computational

thinking [1]. Computational thinking refers to the ability to

discover the core principles of problem situations, simplify

them, and solve them logically and efficiently [2]. Recently,

coding education has received considerable attention as a

practical tool for developing computational thinking. A typical

tool for such coding education is Scratch, an educational

programming language capable of block-type coding

programming.

On the other hand, object-oriented programming technology is

widely adopted for large-scale software development, owing

to its advantage of enabling flexible program development [2,

3]. Recently, research has been proposed regarding object-

oriented concept learning using Scratch [4, 5]. Scratch is not a

programming tool that supports object-oriented concepts, and

hence, it is not possible to accurately define class definitions,

object creation, and inheritance. In this study, we present and

analyze existing research results for object-oriented learning

for low school-age learners, such as elementary and middle

school students. More fundamentally, we design additional

function elements for Scratch to apply object-oriented

concepts and introduce application examples. Finally, we

verify the usefulness of the proposed approach through expert

evaluation.

SCRATCH AND OBJECT-ORIENTED TECHNOLOGY

LEARNING

Scratch Programming Tool

 Scratch is a popular educational programming language.

Stage, sprites, scripts area, and blocks are used as components

for writing a program. The stage is the place where the

program output is executed and rendered. A sprite is a basic

unit for executing a program. There are various kinds of script

blocks that are predefined and provided for setting the values

of sprites or controlling operations, and one selectively

combines these to complete the implementation of a specific

sprite. The default script blocks consist of 10 types: Motion,

Looks, Sound, Pen, Data, Event, Control, Sensors, Operations,

and More Blocks. More Blocks, provided from Scratch 2.0

version, allow the creation of blocks that can perform desired

new functions by combining default blocks. That is, it is

possible to create a user-defined block. Backpack is a personal

repository for reusing frequently used script blocks.

Learning Object-oriented Programming

Object-oriented programming is widely adopted for large-

scale software development, because of its high efficiency in

software development encompassing productivity, reusability,

and maintenance [3, 4]. Learning object-oriented concepts is

one way to recognize and solve problem situations, as well as

a tool to improve personal cognitive abilities. Thus, it can play

an important role in learning for students of a low school age

[6]. In addition, because object-oriented programming is used

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 20 (2017) pp. 9942-9947

© Research India Publications. http://www.ripublication.com

9943

in actual software development sites, a coding education based

on object-oriented concepts is required [7]. The essential

characteristics of object-oriented programming can be

considered as the understanding of classes and objects through

data abstraction, inheritance, polymorphism, encapsulation,

and dynamic binding [3, 8]. Thus, the most fundamental

object-oriented concepts for elementary and middle school

students' coding education can be surmised to be the

understanding of objects, the relation between classes and

objects, and inheritance.

 It is effective to perform object-oriented programming

through unplugged learning. In [4, 5], an approach to learning

object-oriented concepts based on five steps was proposed, as

shown in <Fig. 1>.

Figure 1. Five Steps for Learning Object-oriented Concepts

At each step, students conduct unplugged activities using a

prepared activity form. A bottom-up approach is adopted to

define a class after extracting the common properties and

functions by analyzing individual objects. For example, in the

class hierarchy of <Fig. 2>, we can see that the class Figure is

defined, with color and position properties, and that the Bar,

Ball, and Brick classes are represented as its child classes. In

the final step, we actually implement the defined classes in

Scratch. The left side of <Fig. 3> shows an implemented

example of the class Figure which contains two properties

created using More Blocks facilities. The right side of <Fig.

3> shows an example of the class “Bar”, which includes two

inherited properties from the class Figure, and an additional

function “Move” of its own.

Figure 2. Class Hierarchy

Figure 3. Implemented Class Figure (left)

and Class Bar (right)

PROPOSED APPROACH AND EVALUATION

Analysis for the Previous Approach

Because Scratch is not a programming language that supports

object-oriented concepts, authors of previous research have

focused on a learning process centered on the concept of

inheritance of common properties and functions included in

the superclass, while adopting existing sprites in the role of

classes or objects, without clearly distinguishing between

objects and classes. In order to express the inheritance

relationship, we have to duplicate the same script blocks for

each sprite implemented for a class. For example, two More

Blocks are created as the member properties of the class

Figure on the right side of <Fig. 3>. However, because these

More Blocks are for the Figure sprite, we must explicitly

rewrite the same More Blocks each time we implement a child

class, that is, the Bar, Ball, or Brick sprite.

In the Scratch 2.0 offline editor, it is possible to save specific

frequently used script blocks in a personal repository

(Backpack), and to apply them after dragging them from the

repository when the same script blocks are written for new

sprites. However, there are obvious limitations in inheritance

learning using only More Blocks and the private repository.

First, the purpose of using More Blocks is to simply copy and

use script blocks to avoid the inconvenience of rewriting a

script block, rather than taking an inheritance viewpoint. The

inconsistency that occurs when expressing the concept of

inheritance learned through unplugged activity using Scratch

is likely to make it difficult for learners to understand object-

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 20 (2017) pp. 9942-9947

© Research India Publications. http://www.ripublication.com

9944

oriented concepts naturally and clearly. Second, if the

definition of the superclass changes in the class hierarchy, then

the contents stored in the private repository do not change, and

so all script blocks that use the definition must be rewritten.

Third, the scope of reuse of More Blocks is limited to one

time (which may be a development error). That is, we can

define a new More Blocks B using the previous More Blocks

A, but if the additional block C is further defined using B, then

A cannot be referred to. This means that we cannot define a

class hierarchy of depth greater than two.

Designing Additional Functions

We aim to provide additional functions to naturally learn the

relationship between class and object and the inheritance

concept, which constitute the most fundamental aspects of

object-oriented technology through Scratch. In addition, by

applying the Scratch programming style, we reduce the

learning-overhead on the newly added functions for the learner

as much as possible. To this end, we design additional

functional elements of scratch as follows.

First, we provide a template definition function. In this paper,

we use the term ‘template’ instead of ‘class.’ For the

convenience of users who are familiar with Scratch, we

support user creation of user-defined templates, in a similar

manner to how More Blocks are handled. When creating a

template, various default script blocks, including More Blocks,

can be combined to create properties or methods.

Second, we maintain template storage to store the created

templates. They can be stored in the existing Backpack storage

or in a separate space. A generated template can be shared or

reused in multiple projects.

Third, a created template can be reused when another template

is created, so that a template hierarchy can be generated. That

is, when a new template is created, it inherits the entire

contents of the parent template.

Fourth, in order to achieve the effect of creating an object

instantiated by a specific template, an existing sprite or user-

generated sprite can be instantiated as an object of a specific

template. That is, an instantiated sprite of a specific template

can be programmed by utilizing a member block defined in the

template.

Figure 4. Creating a New Template

Figure 5. Template Inheritance

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 20 (2017) pp. 9942-9947

© Research India Publications. http://www.ripublication.com

9945

Application Example

The following are the series of assumptions in Scratch to

support the functions proposed in the previous section, where

we program the results analyzed in <Fig. 2>. <Fig. 4> shows

the process of creating the template Figure using the template

definition function. If the ‘T’ icon and ‘Make a Template’

button are selected, a separate window will pop up where a

new template can be created. If the name of the template is

entered, then a template with a blue block is created and

placed in the scripts area. The generated template will also

appear as a block icon at the bottom of the ‘Make a Template’

button. The right side of <Fig. 4> shows the process of adding

property members to the template Figure. First, using More

Blocks we create user-defined blocks for color and position

properties, respectively. Then, we drag the block icons for the

two added blocks and attach them as members of the template

Figure, thus completing the creation of the template Figure.

<Fig. 5> shows the process of defining the template Bar,

which is a child of the template Figure. To create the template

Bar as a child of the template Figure, drag the block icon for

the template Figure to the right of the template Bar placed at

the scripts area. This means that the template Bar will inherit

the members of the template Figure. As shown on the right

side of <Fig. 5>, the template Bar automatically includes

blocks for the color and position properties, and the shape of

the block icon for the template Bar is combined with the block

icon for the template Figure.

 <Fig. 6> shows the final result for the template Bar after

adding the method Move using More Blocks. Templates and

user-defined blocks created in this manner may be stored in

Backpack for future use. By repeating this process, we can

create templates and define a template hierarchy to naturally

express the object-oriented concept.

Figure 6. Creating the Bar Template

Figure 7. Instantiating a Sprite as an Object of the Template Bar

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 20 (2017) pp. 9942-9947

© Research India Publications. http://www.ripublication.com

9946

<Fig. 7> shows the process of instantiating an arbitrary sprite

as an object of the template Bar. When we create a new sprite

with a bar image and then drag the template Bar from the

Backpack to the scripts area, the sprite is now instantiated as

an object of the template Bar. As a result, block icons for the

color and position properties and the method Move, which are

members of the template Bar, will be included automatically

in the More Blocks for the Bar sprite. The upper part of <Fig.

7> shows the action programmed using three member blocks

when we click the Bar sprite. In this manner, the learner can

program each class and class hierarchy defined through the

unplugged activities in a visual form using Scratch, so that

object-oriented concepts can be understood more naturally.

Expert Evaluation

The applicability and improvement of the designed functions

are verified through an expert evaluation. We selected five

teachers as experts, who have a high level of understanding of

object-oriented technology and experience in computer

programming education classes using Scratch for elementary

school students. The expert evaluation was conducted by

explaining the proposed function and the programming

application example according to the scenario, and then

obtaining responses to a questionnaire. The questionnaire was

composed of eight items for the total of three areas. The

experts provided answers according to a five-level Likert scale

in one point intervals. The expert evaluation areas and results

are shown in <Table 1>.

Table 1. Results of Expert Evaluation

Validity and

Applicability of

Proposed

Functions

Educational effectiveness of the

proposed functions

4.5

Actual utilization of the proposed

functions

4.4

Satisfaction of

Implemented

Functions

Features for creating templates 4.6

Functions for defining template

hierarchy

4.6

Ability to instantiate sprites 4.4

Intuitiveness and

Convenience of

Operations

Intuitiveness and convenience for

template creation

4.8

Intuitiveness and convenience for

template hierarchy definition

4.6

Intuitiveness and convenience for

instantiating sprites

4.2

The results of the expert evaluation show that the overall

satisfaction level with the additional functions proposed in this

paper is high. And it can be surmised that this is highly likely

to be adopted as a tool for object-oriented concept learning

when the proposed functions are implemented actually. In

particular, it was evaluated that the proposed functions

provide sufficient support for learning the fundamentals of

object-oriented concepts consistently. Furthermore, it was

evaluated that this can be utilized without any additional

burden on learning, because a program can be constructed by

using the same programming style in Scratch.

CONCLUSION

Recently, software education has attracted considerable

interest worldwide as a tool for generating computational

thinking. In particular, block-type coding programming tools,

such as Scratch, are widely adopted as educational

programming languages. Recently, research has been

introduced on learning basic object-oriented concepts using

Scratch. However, because Scratch does not reflect object-

oriented concepts, it is not sufficient to facilitate consistent

learning for beginners learning object-oriented concepts. In

this paper, we presented additional functions to enable natural

learning of object-oriented concepts in Scratch, and examined

an application example. Finally, through an expert evaluation,

we confirmed that the additional functions proposed in this

paper can be useful for learning fundamentals of object-

oriented technology, without significantly increasing the

learning overhead.

REFERENCES

[1] Software Policy & Research Institute, Software-

oriented Society - Meaning and Corresponding

Direction. SPRi Issue Report 2014-003 (2014).

[2] Object-oriented Programing, https://en.wikipedia.org
/wiki/Object-oriented_programming.

[3] T. Kim, Object-oriented Story of K Professor. Life
and Power Press (2005) 29-35.

[4] Y. Kim et al., Design of Game based Educational

Contents for Learning Object-Oriented Concepts.

Proc. of the Summer Conference of the Korean
Association of Computer Education, 17(2) (2013)

35-39.

[5] Y. Kim et al., A Case Study on Course Game Based

Elements for Learning Object-Oriented Concept. J. of
Korean Association of Computer Education, 17(5)

(2014) 1-13.

[6] J. Choi, A Study on Object-Oriented Concept

Learning Using Storytelling. Master's Thesis, Korea
University Graduate School, Seoul, KOERA, (2011).

[7] T. Hong, A Study on Object-oriented Programming

https://en.wikipedia.org/

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 20 (2017) pp. 9942-9947

© Research India Publications. http://www.ripublication.com

9947

Education for Improving Logical Thinking Ability of

Elementary School Students. Master's Thesis,
Catholic University Graduate School, Buchoen,
Korea, (2007).

[8] Nelson, H. J., Armstrong, D. J., and Nelson, K. M.

Patterns of Transition: The Shift from Traditional to

Object-oriented Development. J. of Management
Information Systems, 25(4) (2009) 271-298.

