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Abstract 

This paper proposes a method to predict the direction (azimuth) 

and distance of binaural sound sources simultaneously. With 

the goal of achieving human-like auditory perception in 

machines, the method trains a Deep Neural Network to predict 

both direction and distance by learning from the same set of 

training features. The training features are the two signal 

channels’ cross correlation series and their interaural level 

difference values. The proposed method simultaneously 

predicted the direction and distance of sound sources in the 

range of 1m to 3m and azimuths of 0°,30° and 60°, with high 

accuracy values; the values are comparable to previous 

methods and they are relatively higher in the case of training 

and testing in separate rooms.  

Keywords: Binaural Signals, Distance Estimation, Direction 

Estimation, Deep Neural Networks. 

 

INTRODUCTION 

Background and Objective 

Sound source distance estimation and sound source localization 

have been widely studied by researchers [1-15] in the past few 

decades. Both direction and distance estimation of sound 

sources are useful in various fields. For example, in human-

robot interaction, where a robot can locate the position of a 

human speaker, video surveillance, where the surveillance 

camera rotates and focuses on the position of an event that 

outside it's field of view, hearing aid systems, smart houses, 

wearable mobile devices, etc...  

    Although humans simultaneously perform both sound source 

localization and distance estimation with little or no difficulty, 

robots and other machines are far from reaching this level of 

performing these two tasks in the same or similar manner. The 

reason is that, researchers mostly study these two problems 

separately by focusing on either one of the two.  

    Furthermore, the problem of sound source distance 

estimation has received a relatively lesser attention in 

comparison with sound source localization and it is usually 

tackled with the use of microphone arrays; however, a human-

like system should have only two microphones to mimic the 

biological structure of the human auditory system. Therefore, it 

is best for proposed research methods to function for binaural 

systems (less expensive in production) as well, since many 

systems consist of only two microphones, and they should 

maintain high prediction accuracies. 

 

Related Work 

Researchers have proposed different methods [10-15] to tackle 

the problem of sound distance estimation in the past few years, 

as in the case of the sound source localization. In the case of 

distance estimation, although researchers have done a 

significant amount of work, binaural distance estimation 

remains a challenging task, since many of the proposed 

methods [13-15] use more than two microphones. Other 

researchers proposed some methods for binaural systems; 

however, there is room for improvement in terms of their 

performance accuracies. Some features commonly used in 

these methods include binaural cues such as Interaural Time 

Difference (ITD) and Interaural Level Difference (ILD), 

spectral magnitude cues, Direct to Reverberant Ratio (DRR) 

and Binaural Signal Magnitude Difference Standard Deviation 

(BSMD-STD). 

    To control a mobile robot in terms of azimuth and distance, 

J. Gontmacher et al. [15] used a spherical microphone array 

consisting of six microphones in their research. Although 

microphone arrays such as this one may produce good 

accuracies, they tend to increase both production and 

computation costs. S. Vesa [10] used magnitude-squared 

coherence, a frequency-dependent feature for binaural distance 

estimation. They trained the model with white noise and then 

tested it with speech signals. Even though the model was able 

to classify the speech signals, it was required for them to know 

the azimuth of the listener in advance, since the training 

features used were position-dependent.    

   Using statistical properties of binaural signals, Eleftheria G. 

et al. [11] proposed a novel feature for learning sound source 

distances, the Binaural Spectral Magnitude Difference 

Standard Deviation (BSMD-STD). They used this feature in 

addition to some other ILD-related features, to estimate sound 

source distances. Their method performed well in unknown 

environments; however, it also had lower performance with 
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fine distance resolution in comparison with the S. Vesa method 

[10]. In addition, L. Ghamdan et al. [12] used a combination of 

BSMD-STD features and other binaural cues to estimate the 

joint direction and distance of binaural sound sources by 

learning Gaussian Mixture Models for the task. The evaluation 

of their method produced high performance accuracies in the 

training room, however, when tested in a different room, the 

performance significantly deteriorated.  

    Some researchers have also exploited the power of DNNs for 

sound source localization, showing the potential of DNNs in 

this area. For example, Ning Ma et al. [7] applied DNN for the 

localization of multiple speakers in reverberant conditions and 

Ryu Takeda et al. [8], also proposed a DNN-based source 

localization method, which incorporates directional 

information.  

 

Suggestion 

Through a survey of previous research in the areas of sound 

source localization and sound source distance estimation, we 

noticed that, the following problems are common to previous 

methods. First, most of the methods proposed in this field 

perform only sound source localization or only distance 

estimation; very few methods exist for the simultaneous 

performance of the two processes. This implies that, in order to 

estimate the position (direction and distance) of a sound source 

like humans do, there is a need for two separate algorithms. In 

addition, in the case of GMM or SVM learning-based distance 

estimation methods, the feature extraction steps include too 

many computations. Lastly and most importantly, the 

performances of these methods leave room for improvement in 

the prediction or estimation accuracy. 

    In order to solve the noted problems, we suggest a joint 

direction and distance estimation method using a single DNN. 

Due to its powerful learning capabilities, the DNN can learn to 

predict both azimuth and distance simultaneously, from the 

same set of features. This will solve the first problem of using 

two separate algorithms to predict the position of a sound 

source. With DNN, training can take place with less complex 

features, which are easy to extract, thereby, solving the problem 

of too many computations. Not all, the trained DNN model can 

also attain much higher prediction accuracies as compared to 

other machine learning models.  

Firstly, we record training data at different azimuths and 

distances in a room, and we extract features that are relative to 

both channels of the binaural signals. Next, we supply the 

extracted feature vectors to a DNN for training, by performing 

a multiclass classification, predicting both the azimuth and the 

distances of the recorded training data. 

    The organization of this paper is as follows: Section 2 

introduces the proposed method, section 3 describes our DNN 

Model Design and Training, section 4 presents experiments and 

discussion, and section 5 presents our conclusion. 

 

PROPOSED METHOD 

In this section, we present our method for learning the direction 

and distance of a sound source. The method combines the 

learning of sound source direction and sound source distance 

into one network using a single set of input features per training 

sample.  

 
 

Figure 1: Training Data Recording Positions 

 

Feature Extraction and Preprocessing 

In order to learn the prediction of binaural sound source 

direction or distance with a DNN, we chose a set of suitable 

features, with a focus on using minimal computations. Our goal 

was to ensure that the extraction of our chosen features is a 

simple and less time-consuming process. Moreover, the chosen 

features had to be relative to the two channels of the binaural 

signal in order to preserve necessary direction and distance 

dependent information. For this reason, we chose the cross 

correlation series of the two channels as our training features. 

We performed the time-domain cross correlation using 

equation 1, for only a relevant range of the correlation series. 

Equation 2 shows the computation of the relevant range, using 

the sampling frequency (f), velocity of sound (v) and distance 

between microphones (d). Performing time-domain cross 

correlation for a short relevant range is computationally less 

expensive, compared to using the frequency domain cross 

correlation computation. 

    𝐶𝑟𝑜𝑠𝑠𝐶𝑜𝑟𝑟(𝑙, 𝑟)𝑗(𝑡) =  ∑ 𝑙𝑗+𝑘 . 𝑟𝑘
𝑁−1
𝑘=0          (1) 

 

      Range[min τ, maxτ]  =  [
−𝑑𝑓

𝑣
,

𝑑𝑓

𝑣
]                 (2)  

Instead of selecting the index of the maximum correlation value 

(argmax), which is the ITD value in this case, we used the entire 

cross correlation series as input features [7]. The motivation is 

that, the selection of an ITD value may not always be robust in 

the presence of noise. In addition, the relationship between the 

peak value and its side lobes may carry relevant information 

that the DNN can learn from, for effective classification. Figure 

2 shows a graphical representation of a sample of cross 

correlation series. The relationship between the maximum 
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value (i.e. the peak) and its side lobes carry rich information 

that is not obvious to the human eye.  

 
Figure 2: Sample Cross Correlation between left and right 

channels of a binaural signal 

𝐼𝐿𝐷(𝑟,𝑙) = 20𝑙𝑜𝑔10
∑ 𝑙𝑛

2

∑ 𝑟𝑛
2           (3) 

    In addition to the cross correlation series, we also computed 

the ILD binaural cue using equation 3. The ILD value carries 

information about the relationship between the intensity levels 

of the two channels of the binaural signals as received by the 

microphones. For our experiments, the total number of cross 

correlation series is 81 values. Adding one ILD value, we get 

82 feature values in each feature vector. 

 

Direction Estimation 

Firstly, we trained our DNN model to predict the direction of 

sound sources using the features described in section 2.1. The 

model was successfully trained to predict one of seven different 

azimuth values for a given input signal; achieving prediction 

accuracies above 99%, as shown in Table I. The initial 

parameters of our network consisted of three hidden layers with 

ten hidden neurons each. We increased the numbers of the 

hidden neurons by doubling the previous number in each run, 

until there was no significant effect on the training and 

validation accuracy, at eighty neurons per hidden layer. Figure 

3 displays the effect of increasing the number of hidden neurons 

in terms of the validation accuracy.   

  

Figure 3: Effects of hidden neurons on validation accuracy 

Table I: Performance of the Direction Estimation DNN 

Model 

Training  Testing  Test Accuracy 

Room1 Room1 99.7839% 

Room1 Room2 99.6549% 

Room1&2 Room3 99.4236% 

 

Joint Direction and Distance Estimation 

 To learn the prediction of the distance between sound sources 

and the receiving microphones, we implemented a number of 

new approaches (in terms of input features) without much 

success. However, we empirically discovered that the same 

input features used for learning the sound source direction (i.e. 

the entire cross correlation series of the binaural signals) has 

information that the DNN uses to learn the distances of the 

training dataset. We therefore adjusted the parameters of our 

DNN, specifically the output layer, in order to make 

simultaneous predictions of both direction and distance for the 

training dataset, using the same input feature vectors. 

    The new direction and distance prediction model 

successfully learned to predict both the direction and distance 

of sounds similar to those used in the training process. We then 

performed further experiments with different signals in 

different rooms to exploit the power of DNNs in the prediction 

of sound source distances. 

 

DNN MODEL DESIGN AND TRAINING 

We designed a Deep Neural Network and trained it to map the 

82 dimensional feature vector discussed in the Feature 

Extraction and Preprocessing section, to their corresponding 

direction-distance labels The architecture of our DNN is a fully 

connected neural network with eight hidden layers of hundred 

neurons each. For each hidden layer, we used a Rectified Linear 

Unit (Relu) activation function. Since our method is a 

multiclass classification - classifying datasets into multiple 

direction and distance classes - our output layer was a softmax 

classifier. By using the softmax classifier, the DNN model 

outputs a probability value for each of the possible direction 

and distance classes. 

   Figure 4 shows a block diagram of the proposed method. We 

extract input features from the training dataset and we use them 

to train the model, which is then used to classify new input 

signals.  
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Figure 4: Block diagram of proposed method 

 

EXPERIMENTS AND DISCUSSION 

In this section, we discuss the performance of the proposed 

method based on the evaluation performed in different 

reverberant environments. We implemented our method on an 

Intel PC using Visual C++ with Portaudio library, and Python 

programming. The experimental setup includes two dynamic 

cardioid microphones connected to a TASCAM US 4x4 audio 

interface. We position the microphones in the room at a distance 

of 30cm apart. We collected our training data by recording 

sounds, including speech signals from the TIMIT database, 

played from a speaker at different azimuth and distance 

positions. The sampling rate for recording was 44.1 kHz      

    We used three different azimuth positions; 0°, 30° and 60° in 

the training and testing phases along with four different 

distances from the microphone setup; 1meter, 1.5 meters, 2 

meters and 3 meters. In total, we used approximately 12,000 

samples for training and validation, and for the evaluation, we 

used test datasets of approximately 5000 signals recorded in 

different rooms to test the model. Figure 1 shows the recording 

positions for preparing the training and test datasets. To 

evaluate the trained model, we performed experiments in three 

different rooms. In section 2.2, we showed that the model, 

which we trained for only direction prediction, was successful 

in predicting the direction of new sound sources, achieving 

accuracies above 99%. When it comes to the simultaneous 

prediction of both direction and distance, we trained the model 

first in Room 1 and tested it in the same room using test signals 

that are same as those used to train the model. The model 

achieved high accuracies above 96%, as shown in Table II. 

Testing the same model in Rooms 2 and 3, where we did not 

train the model, the prediction accuracies were much lower.  

    Again, we preformed the model training in Rooms 2 and 3 

and tested them in all the other rooms. The performances of 

both models reduce to an average of approximately 61.5624%. 

Finally, we trained the model with combined dataset from 

Room 2 and 3, and we noticed that, while testing in either of 

the rooms, the accuracy of prediction increased to above 80%. 

 

 

 

Table II: Performance of the Proposed Method in Different 

Training and Testing Rooms 

Training  Testing  Test Accuracy 

Room1 Room1 96.0625% 

Room1 Room2 67.9459% 

Room2 Room1 57.5938% 

Room 2&3 Room1 92.8042% 

Room2&3 Room2 79.1573% 

Room2&3  Room3   89.7075% 

  

    We compared the performance of our method to the 

performance of a previous binaural distance detection method 

[11], as recorded in their paper. They performed experiments 

for two different sets of distance classes; course distance 

classes and fine distance classes, and they recorded maximum 

accuracies of 62.8% and 61.2% for the fine distance classes and 

a maximum accuracy of 95.9% for the course distance classes.  

    In addition, we compared with a previous joint direction and 

distance estimation method [12]. They recorded accuracies of 

60% and below when they evaluated their method in different 

rooms from the training room. In comparison, our method 

performs better than the joint direction and distance method [12] 

in the case of testing the model in a different room, because our 

method achieved a maximum of 67.9459% accuracy. However, 

for the previous distance only method [11], they recorded 

accuracies slightly greater than our method’s in some cases and 

accuracies that are much lower than our proposed method in 

other cases.  

    Both of the previous methods used GMM learning 

algorithms together with multiple computations for the 

extraction of features, whereas for our proposed method, we 

computed only a simple cross correlation in addition to the ILD 

values for the DNN training. Yet the proposed method achieves 

prediction accuracies that are comparable to those of the 

previous methods. Therefore, we can conclude that if we use 

better or richer features in the training of our model, we will 

see a significant improvement in its performance. Furthermore, 

extending our training dataset to include different kinds of 

expected signals taken from rooms with different reverberation 

values may lead to a better generalization of the model. 

 

CONCLUSION 

This paper presents a method for the simultaneous prediction 

of both direction and distance of binaural sound sources using 

Deep Neural Networks. The proposed method employs simple 

and easy-to-extract features such as cross correlation series and 

Interaural Level Differences for the training of the DNN model. 

We empirically discovered that the cross correlation series 

together with the ILD values carry distance-dependent 
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information based on which we could train the DNN to predict 

the distance between sound source and receiver. The goal of 

our study was to achieve a more human-like auditory 

perception in robots and other machines; hence, we used the 

same set of features to train our model to predict both direction 

and distance of binaural sound sources in a simultaneous 

manner.  

    We have shown that the proposed method successfully 

predicts the direction and distances of sound sources with high 

accuracy (above 95%) when we tested the model in the same 

room where training took place. When testing was performed 

in other rooms, the performance of the model slightly reduced, 

however, it remains comparable with the previous methods [11, 

12] we compared with. In the case of training and testing the 

model in separate rooms, our model outperforms the previous 

joint direction and distance estimation method [12]. 

    We concluded that the proposed DNN model for 

simultaneous prediction of direction and distance could 

generalize to different types of rooms and conditions if we use 

more training data taken from such rooms in the training of the 

model. Furthermore, by training the model with better training 

features, we expect that the proposed method will significantly 

outperform the previous methods in terms of prediction 

accuracy. The performance of the model shows that it is 

possible to train and use it in real world applications to estimate 

the position of a given sound source.  

    Our future work includes extending our training dataset to 

improve the generalization of the model and determining which 

features will be better at increasing the performance of the 

system to achieve maximum prediction accuracy. We plan to 

extend the model to predict the positions of multiple sound 

sources in a room.  
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