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Abstract 

This paper presents a Novel Face Recognition System Based 

on Subclass Kernel Nonparametric Discriminant Analysis 

(SKNDA), which incorporates subclass information in the 

KNDA optimization process. It jointly minimizes the data 

dispersion within and between subclasses to improve 

classification accuracy. Moreover, SKNDA has the advantage 

of reducing data dimension in a discriminative way and 

performing a discriminant eigenspace representation, where 

some near-global variations of the data are incorporated in the 

kernel space, to handle heteroscedastic, non-normal and non-

linearly separable face classes. In order to make adequate face 

recognition, we integrate the Gabor features and the ordinal 

measures to derive the facial features, which are encoded in 

local regions, as visual primitives. The different ordinal 

measures are extracted from Gabor filtering responses. Then, 

the statistical distributions of these primitives in diverse face 

image blocks are concatenated, which generates a feature 

vector whose dimension is reduced using PCA. Finally, the 

latter is employed as a feature input for the proposed SKNDA. 

An extensive comparison of the SKNDA model to relevant 

existing kernel classifiers is performed on real world datasets 

to show the advantages of our proposed method. In particular, 

the experiments on face recognition have clearly shown the 

superiority of the SKNDA over other methods. 

Keywords: discriminant models; machine learning; 

nonparametric discriminant analysis; kernel; features 

extraction; Gabor filter; biometrics; face recognition; ordinal 

filter; ordinal measures. 

 

INTRODUCTION 

Past attempts performed on face recognition and its 

applications are highly recognized. Among these applications 

are access control, identity verification and video surveillance 

[1]. However, face recognition methodology still possesses 

many challenging problems in practical applications due to 

the large intra-class facial variations, caused by illumination, 

expression, pose, aging, occlusion and the small inter-class 

similarity [2]. Broadly defined, then, it is the ability to 

determine a subject’s identity based on his facial 

characteristics.  

The performance of face recognition system depends on the 

way feature vectors are extracted, so that they display higher 

relevant information, in order to be classified into appropriate 

classes.  

To deal with these challenges, many promising research 

works have been conducted, which can be classified into two 

main classes [3], namely, appearance-based analysis and local 

feature description. Appearance-based analysis attempts to 

find a set of basis images from a training set and to represent a 

global appearance of a human face as a linear combination of 

these basis images with their projections in the subspace, 

using a given optimization criteria, as the case for Principal 

Component Analysis (PCA) [4], Independent Component 

Analysis ICA [5] and Fisher’s Linear Discriminant (FLD) [6], 

which have been much recognized among the most prevailing 

and successful face representation methods [7]. In addition, 

many researchers have suggested extracting facial features 

vectors by utilizing spatial-frequency techniques, such as, 

Discrete Cosine Transform (DCT) [8] and Fourier transform 

[9]. Using these techniques, face images are transformed to 

the frequency domain and only the coefficients in the low-

frequency band are maintained for face representation. In 

contrast to the subspace-based methods, these methods do not 

need a training process to learn the basic images. 

Recently, there is a growing interest to develop face 

recognition systems based on local features as they are more 

robust to the intrinsic facial variations. In the local-based face 

representation, each local facial region is represented by a 

feature vector. Thus, only detailed traits within this specific 

area are encoded. Many representative methods based on local 

analysis, such as, Local Binary Patterns (LBP) [10], Local 

Matching Gabor (LMG) [11]and Fisher linear discriminant 

mailto:ksantini@uwindsor.ca
mailto:salma_ben_said@yahoo.fr
mailto:lachiri.z@gmail.com


International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 12124-12133 

© Research India Publications.  http://www.ripublication.com 

12125 

Model (EFM) [12] have been proposed. However, such 

methods did not lead to good results given the high 

dimensional feature space, the low amount of information 

used and the variability of lighting, poses and facial 

expressions etc....  

Thereby, several approaches have been developed to 

surmount the problems of face recognition based on filtering, 

dimension reduction and classification of facial features 

vectors. We can mention among them: Su et al [13] introduce 

a face recognition method which combines both global and 

local discriminative features, by keeping the low-frequency 

coefficients of Fourier transform and the local features 

extracted by Gabor wavelets. Subsequently, multiple Fisher’s 

linear discriminant (FLD) classifiers are separately applied to 

the Fourier features and each patch of Gabor features. Finally, 

all these classifiers are integrated to form a hierarchical 

ensemble classifier. Alshebani et al [14] suggested a hybrid 

feature extraction technique for face recognition utilizing local 

representation techniques, the features extraction step is based 

on the local features of the principle holistic regions such as 

eye, nose and mouth and then the maximum intensity of these 

regions are calculated using Gabor filters. Finally, in the 

classification step, the Nearest Neighbours method (KNN) is 

employed to calculate the distances between the three regions 

feature vectors and the corresponding stored vectors. Salh and 

Mustafa [15] developed a face recognition method based on 

PCA and LDA for data dimension reduction, and then the 

support vector machine (SVM) is used in the classification 

stage. More precisely, this approach combines the two main 

techniques PCA and LDA to extract low-dimensional features 

from a high dimensional space, while separating images that 

are from different classes and gather images that are from the 

same class. Finally, the SVM algorithm is explored for robust 

decision. However, all the above mentioned face recognition 

methods are based on non-flexible linear classifiers. Indeed, 

these approaches are unsatisfactory for different face 

recognition problems, where data classes are non-normal, 

heteroscedastic and non-linearly separable.  

Filani and Adebayo [16] represent appearance based methods 

for face recognition based on linear and nonlinear algorithms. 

Firstly, the Principal Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA) are used as linear dimensional 

reduction projection techniques to encode pattern information 

based on second order dependencies and for nonlinear 

methods, the Kernel Principal Components Analysis (KPCA) 

and Kernel Fisher Analysis (KFA) are employed to handle 

relationships between three or more pixels in face images. 

Finaly, Mahalinobis Cosine (MAHCOS) metric is utilized to 

determine the resemblance measure among two face images. 

For this reason, Yin et al [17] introduced a face recognition 

technique based on RBF kernel SVM and particle swarm 

optimization (PSO-SVM). It consists in searching the best 

position with respect to the corresponding optimal solution for 

an optimization problem in the virtual search space. This 

method employs PCA to extract the features of face images, 

which are used to train and test the PSO-SVM model. PSO 

can efficiently find optimal solutions in large search spaces 

and it is utilized to simultaneously optimize the parameters of 

SVM. KSVM considers only boundary data points (i.e., 

support vectors) to build the model, regardless the spread of 

the remaining data [18], which could affect the classification 

accuracy and face recognition performance. 

More recently, Soula et al [19][20] presented a novel face 

recognition method based on Gabor and ordinal wavelets for 

facial feature extraction, and on flexible non-linear Kernel 

Fisher Discriminant Analysis (KFD) and Kernel 

Nonparametric Discriminant Analysis (KNDA), respectively, 

for dimension reduction and classification. In fact, KFD 

consists in performing the traditional Fisher’s Linear 

Discriminant Analysis (LDA) in the kernel space, which 

minimizes the intra-class variances of feature classes and 

maximizes the distance between their means. On the other 

side, KNDA improves upon KFD by incorporating the 

paramount nearby global characteristics of the data to handle 

heteroscedastic and non-normal face classes. Nevertheless, 

KNDA could suffer from performance degradation under 

special circumstances that may appear in real-world cases, 

such as, light directions of imaging, differences of facial 

expression, pose and lighting variations and high variability in 

facial features, which would result in the existence of face 

class subclasses or clusters, and an ever increase of data 

dispersion.  

Therefore, in this paper, we solve mainly this problem by 

building a novel face recognition system based on Subclass 

Kernel Nonparametric Discriminant Analysis (SKNDA). In 

fact, SKNDA is advantageous since it minimizes the 

dispersion of the samples within each subclass and between 

subclasses, while capturing correctly the structural 

information between class boundaries, in order to improve 

classification performance and system discriminatory power. 

More precisely, we modify the standard KNDA objective 

function by replacing the standard within scatter matrix with a 

within and between subclass dispersion matrix, so that the 

resulted objective function takes advantage of the subclass 

information in its optimization process. Also, SKNDA is 

based on kernelization to realize flexible non-linear separation 

between face classes, thereby handling nonlinearly separable 

data. Moreover, our novelty lies in the efficiency of utilizing 

facial feature extraction method, which integrates the benefit 

of combining distinctiveness of Gabor features with 

robustness of ordinal measures, as a relevant solution to 

simultaneously handle intra-person variations and inter-person 

similarity face images. As a matter of fact, it consists of 

different steps. First, to ameliorate the local details of face 

texture, multichannel Gabor wavelets are applied on the input 

face image. Second, to derive ordinal measures from the 

Gabor feature images, various ordinal feature analysis 

techniques are applied to the Gabor feature images. Third, the 

different ordinal measures are jointly encoded in local regions 

as visual primitives. Fourth, the spatial histograms of these 

primitives are concatenated into a feature vector whose 

dimension is reduced using PCA. Finally, the novel SKNDA 

is further used to reduce dimension and classify feature 

vectors. The introduced Novel face recognition system 

investigates the effectiveness of the SKNDA method, which 

discriminates effectively between face data classes, even if 

they are heteroscedastic, non-normally distributed and non-

linearly separable, by incorporating the neighborhood of the 
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decision boundary of the data subclass structure, in the kernel 

space. 

The rest of the paper is organized as follows: In section 2, we 

describe in details the main steps of our proposed face 

recognition system, including the feature extraction and the 

face recognition steps. Moreover, we provide detailed 

mathematical derivation of the novel SKNDA. In section 3, 

we evaluate and compare the SKNDA technique to other 

relevant state-of-the-art kernel classifiers, on real datasets and 

face datasets. Finally, in the last section, we provide 

concluding remarks and perspectives. 

 

FACE RECOGNITION SYSTEM 

In this section, we describe in details the derivation of the 

SKNDA and the face recognition method. The latter includes 

two main steps: Feature extraction and face classification 

based on novel SKNDA. Finally, we provide the face 

recognition method algorithm. 

 

Facial Feature Extraction  

Feature extraction is one of the most important phases in the 

process of face recognition. It consists in finding a specific 

representation of the data that can highlight relevant 

information, which would help in overcoming the human 

facial complications, such as, the light directions of imaging, 

differences of facial expression, variation of pose and aging.  

Indeed, in our method we utilize a local feature analysis 

technique, namely, Gabor Ordinal Measures (GOM) for face 

feature representation [21], which inherits the advantages of 

combining distinctiveness of Gabor features with robustness 

of some kinds of ordinal wavelets, as a hopeful solution to 

reduce intra-person similarities and maximize dissimilarity 

between persons. Thus, the 2D Gabor filters help to produce 

prominent local discriminating features that are appropriate 

for face recognition. The Gabor filters are defined as follows 

[22]: 

 𝜓𝜇,𝑣(𝑧) =
‖𝑘𝜇,𝑣‖

2

𝜎2
𝑒
(
‖𝑘𝜇,𝑣‖

2
‖𝑧‖2

2𝜎2
)

[𝑒𝑖𝑘𝜇,𝑣𝑧 − 𝑒−
𝜎2

2 ].                (1) 

Where 𝒱 ∈ {0, … ,4}  and  𝜇 ∈ {0, … ,7}  are the scale and 

orientation of the Gabor wavelets, respectively,  

and   𝑧 = (𝑥, 𝑦)  represents the spatial position. The wave 

vector 𝑘𝜇,𝑣 = 𝑘𝑣𝑒
𝑖∅𝜇  has a magnitude 𝑘𝑣 =

𝑘𝑚𝑎𝑥

𝜆𝑣
 , where 𝜆 is 

the frequency ratio between filters and ∅𝜇 =
𝜋𝜇

8
, ∅𝜇 ∈ [0, 𝜋].  

In practice, the Gabor wavelet decomposition and 

representation of the face image is the convolution of the 

image 𝐼 with a family of Gabor kernels  𝜓𝜇,𝑣(𝑧), defined as: 

𝐺𝜇,𝑣(𝑧)  = 𝐼(𝑧) × 𝜓𝜇,𝑣(𝑧).                                             (2) 

So, the Gabor wavelet response produced for a given scale 

and orientation in Equation (2), is a complex number, given 

by the following equation [23]: 

𝐺𝜇,𝑣(𝑧)  = 𝐴𝜇,𝑣(𝑧) . 𝑒
𝑖𝜃(𝑧)                                             (3) 

where 𝐴  and 𝜃  define the magnitude response and the 

phase of Gabor kernel at each image position z, respectively. 

The complex Gabor filter is a powerful descriptor. In fact, it is 

a strong tool to characterize the image texture. Therefore, it 

can extract the local structure corresponding to specific spatial 

frequency, spatial locality and selective orientation, which are 

demonstrated to be discriminative and robust to expression 

changes and illumination.  

The complex Gabor filtering can also be described with real 

part and imaginary part. Thus, we can obtain four features for 

each face image, which are phase, magnitude, real and 

imaginary Gabor feature images.  

As for ordinal or multi-lobe differential filtering for ordinal 

feature extraction, they provide a richer representation of 

facial features and are well-conditioned to uniform noise. In 

essence, ordinal features have the advantage of describing the 

neighboring relationship not only in image space, but also in 

various orientations and scales of Gabor responses.            

From a mathematical perspective, multi-lobe differential filter 

(MLDF) is formed by many positive and negative lobes, 

which allow the arrangement of dissociated image regions in 

intensity level and feature level. In the intensity level, only the 

qualitative relationship between the average intensity values 

of two image regions is considered, whereas in the feature 

level, qualitative details on the image features are calculated. 

Thus, the MLDF has the benefit of invariance to monotonic 

illumination variation and robustness against noise. The 

ordinal values are distinctively “0” or “1” as the filtering 

results are, respectively, negative or positive. The MLDF can 

be presented with Gaussian Kernels as follows: 

𝑀𝐿𝐷𝐹 = 𝑐𝑝 ∑
1

√2𝜋𝛿𝑝𝑖
𝑒
[
−(𝑥−𝜔𝑝𝑖)

2

2𝛿𝑝𝑖
2 ]

𝑁𝑃
𝑖=1 𝑐𝑛 ∑

1

√2𝜋𝛿𝑛𝑗
𝑒
[
−(𝑥−𝜔𝑛𝑗)

2

2𝛿𝑛𝑗
2 ]

 
𝑁𝑛
𝑗=1  (4) 

where 𝜔  is the central position, 𝛿  is the scale of 2D 

Gaussian filter, 𝑁𝑛 is the number of negative lobes and 𝑁𝑝 is 

the number of positive lobes and 𝑐𝑛 and 𝑐𝑝 are two constants. 

Different ordinal feature analysis methods are applied to 

Gabor feature images, such as, Gabor magnitude, phase, real 

and imaginary, in order to capture the robust ordinal features 

in diverse directions. 

Face image can be analyzed on two levels: local intensity 

level and local feature level. As for local intensity variation, it 

is insubstantial as facial skin would have the same intensity of 

reflection ratio. In response to such a limited role, ordinal 

measures derived from features level become more powerful 

as they have a manifest discriminatory power in face 

recognition. Consequently, the use of Gabor filter aims at 

getting a more discriminative feature as well as ameliorating 

the local details of face texture. As a pleasing result, the 

integration of feature Gabor images with ordinal filters leads 

to a better recognition rate. 

As a result, the ordinal measures derived from different 

components of Gabor images significantly expand the feature 

vector space of a face image. Thus, it is essential to integrate 

many binary codes in GOM feature images to find a 

discriminant texture parameter and minimize the length of 

GOM feature. 

The Gabor Ordinal Measures (GOM) for face feature 

representation could be described by the following algorithm:  
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Algorithm1. Face features extraction based on Gabor and Ordinal filters 

 

1. We utilize a series of 2D Gabor filters constituted by five frequencies and eight orientations on every pixel of a face, 

so each type of Gabor feature images includes 40 samples and has the same size as the original face image, using the 

equations (1), (2) and (3) .   

2. We employ four tri-lobe and four di-lobe ordinal filters using equation (4), with orientation values equal to 0o, 45o, 

90o and 135o on Gabor response images in order to obtain ordinal measures . 

3. We combine every eight Gabor Ordinal Measures for every pixel, given MLDF and scale into a visual code as the 

following model:  

𝐺𝑂𝑀 −𝑀𝐴𝑃 − 𝜎𝑣
𝑖(𝑥, 𝑦) = [𝐺𝑂𝑀 − 𝜎0,𝑣

𝑖 (𝑥, 𝑦), 𝐺𝑂𝑀 − 𝜎1,𝑣
𝑖 (𝑥, 𝑦), … , 𝐺𝑂𝑀 − 𝜎7,𝑣

𝑖 (𝑥, 𝑦)] 

Where σ ϵ{p: phase, m: magnitude, i: imaginary, r: real} and 𝐺𝑂𝑀 − 𝜎𝑣
𝑖  (𝑥, 𝑦) is the texture primitive obtained at 

position (𝑥, 𝑦) for the 𝑖 − 𝑡ℎ ordinal measure at scale 𝑣. 

4. Spatial histograms are derived from each visual primitive. Then, they are joined to form the statistical distributions of 

these primitives in a face image. 

5. We employ the Principal Component Analysis (PCA) to minimize feature vectors dimensions and maintain the 

appropriate information. 

 

 

The Novel Subclass Kernel Nonparametric Discriminant 

Analysis (SKNDA) 

In this section, we describe the derivation of the novel 

Subclass Kernel Nonparametric Discriminant Analysis 

(SKNDA), which is a discriminative dimensionality reduction 

and classification tool. The SKNDA assumes the existence of 

subclasses in the classes related to, e.g., different facial 

expressions, different viewing angles, pose and lighting 

variations and high variability in facial features, and 

minimizes the feature vectors dispersion between subclasses 

and within each subclass, in the kernel space. Hence, we 

modify the standard KNDA objective function by plugging in 

a within and between subclass dispersion matrix 𝑆𝑊𝐾
𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠, so 

that the resulted objective function takes advantage of the 

subclass information in its optimization process. Also, 

SKNDA is based on the principle that the normal vectors on 

the decision boundary are the most informative for 

discrimination. Thus, it attempts to extract nonparametric 

discriminating features with the computation of the between-

class scatter matrix  SBK on a local basis in the neighborhood 

of the decision boundary, as a promising solution to enhance 

classification performance. 

Let us assume that we have 𝐶𝑏 , 𝑏 = 1,2, … , 𝐿  classes 

constituting an input space of 𝑁 = ∑ 𝑛𝐶𝑏
𝐿
𝑏=1  samples 

{𝑥𝑑}𝑑=1
𝑁  𝑖𝑛  ℝ𝑀, where each class 𝐶𝑏  is formed by 𝑛𝐶𝑏 

samples ,  𝐶𝑏 = {𝑥1
𝑏 , 𝑥2

𝑏 , … , 𝑥𝑛𝐶𝑏
𝑏 } . Hence, the SKNDA 

classifier has two stages: it describes the nonlinear mapping 

function and transforms the data samples into a large 

dimensional feature space Ƒ, where linear classification can be 

realized to learn nonlinear relations with a linear classifier. 

Let the function 𝜑 maps the classes 𝐶𝑏 , 𝑏 = 1,2, … , 𝐿 to high 

dimensional feature class  Ƒ𝑏 = {𝜑(𝑥𝑖
𝑏)}

𝑖=1

𝑛𝐶𝑏
, 𝑏 = 1,2, … , 𝐿 , 

respectively. However, if  Ƒ is very high dimensional, this will 

be impossible to perform mapping directly. In this regard, the 

kernel trick [24] is employed to calculate the dot products of 

the higher-dimensional data instead of the samples 

themselves.  It is defined by this formula: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 〈𝜑(𝑥𝑖), 𝜑(𝑥𝑗)〉,      ∀ 𝑖, 𝑗 ∈ {1,2, … , 𝑁}.           (5) 

Thus, the decision function is described as follows:                

                       𝑦(𝑥𝑖 , 𝜔) = ∑ 𝑓𝑖
𝑥𝜔𝑖 +𝜔0,

𝑁
𝑖=1                           (6) 

 where (𝑓1
𝑥, 𝑓2

𝑥, … , 𝑓𝑁
𝑥):𝒳 → Ƒ  represent a non-linear 

mapping function from the input space to a output feature 

space for the input variable 𝑥 , 𝑓𝑖
𝑥 = 𝐾(𝑥, 𝑥𝑖) , ∀ 𝑖 ∈

{1,2, … , 𝑁} and  {𝜔𝑖}𝑖=1
𝑁  are the weights to be estimated.  

The objective of the SKNDA is to find an adequate subspace 

in order to optimize the projection direction by maximizing 

the between-class distance of the kernel feature vectors 

classes, while minimizing the feature vectors dispersion 

between subclasses and within each subclass. Thus, it consists 

of estimating the projection direction ω  that maximizes the 

following objective function: 

J(ω)=
ωT SBK 𝜔

ωT𝑆𝑊𝐾
𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠 ω   

,                                                       (7) 

where 𝑆𝑊𝐾
𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠  is the within and between subclasses 

dispersion scatter matrix, which is defined as follows: 

 

𝑆𝑊𝐾
𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠 =

∑ ∑ ∑ 𝑝𝑏𝑘(𝑥𝑗
𝐾𝑏𝑘 − 𝜇𝑏𝑘

𝐾 )
𝑛𝐶𝑏𝑘
𝑗=1

𝑁𝑠𝑢𝑏𝐶𝑏
𝑘=1

𝐿
𝑏=1 (𝑥𝑗

𝐾𝑏𝑘 − 𝜇𝑏𝑘
𝐾 )

𝑇

+∑ ∑ (𝜇𝑏𝑘
𝐾 − 𝜇𝑏

𝐾)(𝜇𝑏𝑘
𝐾 − 𝜇𝑏

𝐾)
𝑇𝑁𝑠𝑢𝑏𝐶𝑏

𝑘=1
𝐿
𝑏=1⏟                      

⏞                                

    (8) 

 

Where 𝑁𝑠𝑢𝑏𝐶𝑏  is the number of subclasses of class 𝐶𝑏 , 

b=1,2,…,L, 𝑛𝐶𝑏𝑘 is the samples number of subclass 𝑘 of class 

Within Subclasses Matrix 

Between Subclasses  Matrix 
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𝐶𝑏 , 𝑝𝑏𝑘 =
𝑛𝐶𝑏𝑘

𝑛𝐶𝑏
, (𝑥𝑗

𝐾𝑏𝑘)
𝑑
= 𝐾(𝑥𝑗

𝑏𝑘 , 𝑥𝑑)  (∀ 𝑑 ∈ {1,2, … , 𝑁}) 

are the components of the kernel vector associated to the data 

sample 𝑥𝑗
𝐾𝑏𝑘 , (𝜇𝑏

𝐾)𝑑 =
∑ 𝐾(𝑥𝑖

𝑏,𝑥𝑑)
𝑛𝐶𝑏
𝑖=1

𝑛𝐶𝑏
 𝑎𝑛𝑑 (𝜇𝑏𝑘

𝐾 )𝑑 =

∑ 𝐾(𝑥𝑗
𝑏𝑘,𝑥𝑑)

𝑛𝐶𝑏𝑘
𝑗=1

𝑛𝐶𝑏𝑘
  (∀ 𝑑 ∈ {1,2, … ,𝑁})  are the kernel mean 

vectors of class 𝐶𝑏 and its subclass 𝑘, respectively. Therefore, 

the within and between subclasses dispersion scatter matrix 

can be rewritten as follows: 

 

𝑆𝑊𝐾
𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠 = ∑ ∑ 𝐾𝑏𝑘(𝐼 − 1𝑛𝐶𝑏𝑘)

𝑁𝑠𝑢𝑏𝐶𝑏
𝑘=1

𝐿
𝑏=1 𝐾𝑏𝑘

𝑇 +

 ∑ ∑ (𝜇𝑏𝑘
𝐾 − 𝜇𝑏

𝐾)(𝜇𝑏𝑘
𝐾 − 𝜇𝑏

𝐾)𝑇
𝑁𝑠𝑢𝑏𝐶𝑏
𝑘=1

𝐿
𝑏=1 ,                      (9) 

 

where, 𝐾𝑏𝑘  is the kernel matrix of the subclass 𝑘  of the 

class 𝐶𝑏 , with (𝐾𝑏𝑘)𝑗𝑑 =  𝐾(𝑥𝑗
𝑏𝑘 , 𝑥𝑑), (𝑗, 𝑑) ∈

 {1,2, … , 𝑛𝐶𝑏𝑘} × {1,2, … , 𝑁}, and 1𝑛𝐶𝑏𝑘  is the matrix with all 

entries 
1

𝑛𝐶𝑏𝑘
. The between-scatter matrix  𝑆𝐵𝐾  is defined as 

follows: 

                  

SBK=
1

N
 ∑ ∑ ∑ ∑ ᴪ𝑗

𝑏𝑘(𝐶𝑏,𝐶𝑐)L
b
(𝑥𝑗
𝐾𝑏𝑘)Lb(𝑥𝑗

𝐾𝑏𝑘)T .
𝑛𝐶𝑏𝑐
𝑗=1

𝑁𝑠𝑢𝑏𝐶𝑏
𝑘=1

𝐿
𝑐=1,𝑐≠𝑏  L

b=1   

                               (10)                                                              

Where ᴪ𝑗
𝑏𝑘 are the weighting functions to nullify the 

effects of samples that are far from the boundary [25]. It is 

described as follows:  

ᴪ𝑗
𝑏𝑘(𝐶𝑏 , 𝐶𝑐) =

𝑚𝑖𝑛{𝑑(𝑥𝑗
𝐾𝑏𝑘,   𝑀(𝜅−𝑁𝑁(𝑥𝑗

𝐾𝑏𝑘)
𝑏
))

𝛾

,𝑑(𝑥𝑗
𝐾𝑏𝑘,   𝑀(𝜅−𝑁𝑁(𝑥𝑗

𝐾𝑏𝑘)
𝑐
))
𝛾

}

𝑑(𝑥𝑗
𝐾𝑏𝑘,   𝑀(𝜅−𝑁𝑁(𝑥𝑗

𝐾𝑏𝑘)
𝑏
))
𝛾

+ 𝑑(𝑥𝑗
𝐾𝑏𝑘,   𝑀(𝜅−𝑁𝑁(𝑥𝑗

𝐾𝑏𝑘)
𝑐
))
𝛾 .    (11) 

𝛾  is a control parameter which can range from zero to 

infinity, and 𝑑(𝑥𝑗
𝐾𝑏𝑘,   𝑀(𝜅 − 𝑁𝑁(𝑥𝑗

𝐾𝑏𝑘)𝑏)  and 

𝑑(𝑥𝑗
𝐾𝑏𝑘 ,   𝑀(𝜅 − 𝑁𝑁(𝑥𝑗

𝐾𝑏𝑘)
𝑐
))  are the Euclidean distances 

from 𝑥𝑗
𝐾𝑏𝑘 to the means of its 𝜅 nearest neighbors (κ − NN’s) 

from classes 𝐶𝑏  and 𝐶𝑐 in the kernel space, respectively, 

where 𝑀(𝜅 − 𝑁𝑁(𝑥𝑗
𝐾𝑏𝑘)

𝑐
) =

1

𝜅
∑ (𝜅 − 𝑁𝑁(𝑥𝑗

𝐾𝑏𝑘)
𝑐
)𝜅

ℎ=1 (ℎ) 

and 𝑀(𝜅 − 𝑁𝑁(𝑥𝑗
𝐾𝑏𝑘)

𝑏
) =

1

𝜅
∑ (𝜅 − 𝑁𝑁(𝑥𝑗

𝐾𝑏𝑘)
𝑏
)𝜅

ℎ=1 (ℎ) , 

with (𝜅 − 𝑁𝑁(𝑥𝑗
𝐾𝑏𝑘)

𝑏
) (ℎ)  and (𝜅 − 𝑁𝑁(𝑥𝑗

𝐾𝑏𝑘)
𝑐
)(ℎ)   are 

the ℎ𝑡ℎ nearest neighbors of data sample 𝑥𝑗
𝐾𝑏𝑘 from classes 𝐶𝑏 

and 𝐶𝑐 , respectively.  Here, each component of the matrix 

Lb(𝑥𝑗
𝐾𝑏𝑘) is defined as: 

  (𝐿𝑏(𝑥𝑗
𝐾𝑏𝑘) )

𝑑
= 𝑥𝑗

𝐾𝑏𝑘 − (𝑀(𝜅 − 𝑁𝑁(𝑥𝑗
𝐾𝑏𝑘)

𝑐
))
𝑑
,  (𝑗, 𝑑) ∈

 {1,2, … , 𝑛𝐶𝑏𝑘} × {1,2, … , 𝑁}.                                           (12) 

More precisely, 𝜅  is the free parameter which defines how 

many neighbors to consider. This parameter needs to be 

optimized for each dataset. Formula (12) represents the 

direction of the gradients of the respective class density 

functions in the kernel space [26]. 

Problem (7) can be resolved by obtaining the principal 

eigenvalues and eigenvectors of (𝑆𝑊𝐾
𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠)

−1
𝑆𝐵𝐾 . However, 

since the higher-dimensional kernel space is of dimension N, 

numerical problems could cause the matrix  𝑆𝑊𝐾
𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠  not to be 

invertible. Hence, the matrix 𝑆𝑊𝐾
𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠 needs to be regularized 

before calculating its inverse. This is achieved by adding a 

small multiple β of the identity matrix I [27]. Therefore, the 

optimal solution 𝜔∗ , defining the optimal decision hyper-

plane, consists of the eigenvector corresponding to the largest 

eigenvalues of (𝑆𝑊𝐾
𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠 + 𝛽𝐼 )−1𝑆𝐵𝐾 .  

 

Face Recognition Method Algorithm 

The algorithm of the face recognition method is defined as 

follows: 

 

Algorithm 2. Face Recognition Algorithm 

 

1. Facial feature extraction with (Gabor Ordinal 

Measures) for compact and discriminative feature 

representation. 

2. Generate the discriminative subclasses into each 

class using a clustering algorithm. 

3. Mapping each feature vector into kernel feature 

space, using RBF Kernel 𝐾(𝑥, 𝑥𝑖) = 𝑒
−‖𝑥−𝑥𝑖‖

2 𝜎⁄ , 

where σ is the "width" parameter. 

4. Training phase: Train the SKNDA on the different 

classes of face feature vectors in the Kernel space 

using equations (9) and (10) in order to derive 

nonparametric discriminant faces features. 

5. Testing phase: the trained SKNDA is used to project 

the test samples into different lower dimension 

classes. 

6. The Euclidean distance is used to classify the testing 

samples into resulted different lower dimension 

classes.  

7. Face Recognition. 

 

 

EXPERIMENTAL RESULTS  

In this section, we evaluate and compare the proposed 

SKNDA against relevant state-of-the-art classifiers, in order 

to show the advantage of incorporating the subclass 

information of each class and of minimizing the distribution 

of the samples within each subclass and between subclasses. 

Then, we provide a comparative evaluation of our face 

recognition method using SKNDA on well-known face 

datasets. 

Datasets Used 

We have used both real world datasets and faces datasets in 

our experiments to test the effectiveness of our proposed 

method SKNDA in a general context and in face recognition 

context. For the experiments on real world datasets, detailed 

description of these datasets can be found in Table 1. These 

datasets have been extracted from the UCI machine learning 
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repository and selected minutely [28], so that we have a 

variety of dimensions and sizes. In the face recognition 

context, we have used face databases which are described as 

follows: 

Yale face database [29]: This database is created 

by Yale University. It contains 5760 images of 10 subjects 

and the number of pictures per person is 576 under different 

viewing conditions (9 poses x 64 illumination conditions).  

UMIST [30]: This Face Database consists of 564 images of 20 

individuals (mixed race/gender/appearance), each individual 

is shown in a range of poses from profile to frontal views and 

the number of pictures per person from around 24 a 84. 

AR [31]: The AR database consists of 1190 images of 85 

individuals taken under very significant changes in 

illumination, facial expression and occlusions. 

FRAV2D [32]: This database is composed of 109 subjects, 

with 32 images per person, taken under different poses and 

lighting conditions. 

PIE [33]: This database is composed of 68 subjects, with 60 

images per person, taken for different expressions and under 

different poses and illumination conditions. 

 

Table 1. Description of the real data sets. 

Dataset name Number 

of class1 

samples 

Number 

of class2 

samples 

Number of 

classes 

Number 

of 

features 

Breast Cancer 233 430 2 9 

diabetes 268 500 2 8 

diabetes1 268 500 2 7 

German 700 300 2 24 

Heart Disease 134 159 2 13 

liver 145 200 2 6 

Thyroid 150 35 2 5 

Ionosphore 225 126 2 34 

Haberman's 

survival 

225 81 2 3 

Twonorm 3697 3703 2 20 

Waveform 3304 1696 2 21 

SPECT 212 55 2 44 

Ringnorm 3736 3664 2 20 

 

Experimental Protocol 

We have organized the experimental comparative evaluation 

into two sets: The first set of experiments was performed on 

the real datasets (see Table 1 and table 2), to show the 

efficiency of the proposed SKNDA in terms of classification 

performance. The SKNDA has been evaluated and compared 

to three other contemporary classifiers, namely, the Kernel 

Support Vector Machines (KSVM) [24], the Kernel Fisher 

Discriminant (KFD) and the KNDA. The second set of 

experiments was carried out on the face datasets described 

above, in order to evaluate the proposed face recognition 

system based on SKNDA, in terms of recognition 

performance. 

To make sure that the obtained results are not coincidental or 

biased, for each evaluated classification technique, we utilize 

a 10 fold cross validation process [34]. More precisely, each 

used dataset was randomly split into 10 subsets of equal size. 

Then, to build a model, one of the 10 subsets was removed to 

represent test samples, and the rest was used as the training 

data. Finally, the accuracy over all models of a dataset is 

estimated by averaging over the 10 obtained accuracy 

estimates.  

For data kernelization, we have used the Gaussian RBF 

kernel 𝐾(𝑥, 𝑥𝑖) = 𝑒
−‖𝑥−𝑥𝑖‖

2 𝜎⁄ , where σ represents the positive 

“width” parameter. In fact, this kernel was proven to be robust 

and flexible [35].  

For the SKNDA and KNDA, cross-validation and grid search 

are used in order to get the combination of hyperparameters, 

namely, σ and 𝜅 that yield the best classification performance. 

As far as the KFD is concerned, the tuning of σ is achieved 

using cross-validation. Regarding KNDA and SKNDA, we 

performed 10 independent runs with different nearest 

neighbor numbers 𝜅 ∈ {1,2, … ,10}, respectively, and then we 

select the value of 𝜅 that provides best classification 

performance. In order to evaluate and compare two class 

classifiers in term of performance, the Receiver Operating 

Characteristic (ROC) [36] are mostly used. The ROC curve 

represents a powerful measure of the performance of studied 

classifiers. It does not depend on the number of training or 

testing data points, but rather it depends only on rates of 

correct and incorrect samples classification. The ROC curve is 

created by plotting the True Positive Rate (TPR) vs the False 

Positive Rate (FPR). To evaluate the different methods, we 

have also used the Area Under Curve (AUC) produced by the 

ROC curves [37]. Also, paired t-test confidence intervals (CI) 

estimated, over AUC values of 10 models, between the 

SKNDA and the KSVM, KNDA and KFD, in order to 

quantify the probability of the paired distributions being 

nearby or not, in order to favour the performance 

enhancement by SKNDA. The higher the confidence interval, 

the lower is the probability that the underlying distributions 

are statistically indifferent. In order to identify the clusters of 

each data class, we have chosen the clustering method and the 

validity index proposed in [38], as it performs well when 

clusters are highly overlapped or there is significant variation 

in their covariance structures. So, in order to initialize the 

clustering algorithm of [38], for all data sets used we set the 

number of clusters Cmin = 2 and Cmax = 10, with the 

assumption that each data set class has a minimum of 2 

clusters (subclasses) to a maximum of 10 clusters. Hence, we 

obtain the partitions described in Table 2. 

Concerning the face datasets, the classification accuracy has 

been used for the evaluation and comparison of each method 

recognition performance. It is defined by 100 
𝑁𝐶𝐶

𝑁𝑡𝑒𝑠𝑡
%, where 

𝑁𝑡𝑒𝑠𝑡  is the total number of testing samples and 𝑁𝐶𝐶  is the 

number of samples classified correctly.  
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RESULTS AND DISCUSSION 

As we can see from Table 3, SKNDA provides best 

performance in terms of AUC values, on all real datasets, by 

averaging over 10 different models.  Moreover, the last row of 

Table 3 provides the confidence intervals (in %) obtained 

from the performed t-tests. We can clearly notice that all the 

confidence intervals are high (very close to 100%), which 

shows that SKNDA indeed provides statistically significant 

accuracy improvements. In fact, SKNDA has the advantage of 

incorporating subclass information, in order to minimize the 

dispersion of the samples within each subclass and between 

subclasses, while capturing correctly the structural 

information between class boundaries, thereby improving 

classification discriminatory power.  

Unsurprisingly, KSVM and KFD provide almost the lowest 

AUC values. In fact, the KSVM considers only boundary data 

points (i.e., support vectors) to build the model. However, 

these points do not completely represent the overall class. 

Generally, solutions to boundary-based methods are only 

calculated based on the points near the decision boundary, 

regardless the spread of the remaining data [38]. Thus, 

solutions to boundary-based methods like KSVM can be 

misled by the spread of data, since these methods tend to 

separate the data along large spread directions. On the other 

side, KFD assumes that the samples of each class are 

generated from underlying multivariate normal distributions 

of common covariance matrix with different means (i.e., 

homoscedastic data). Hence, KFD is incapable of dealing 

explicitly with heteroscedastic (classes with different 

covariance matrices) and normally distributed data.   

The KNDA provides better classification results than the KFD 

and KSVM. This is based on the principal that the normal 

vectors on the decision boundary are the most suitable for 

discrimination. Thus, KNDA tries to find in feature space, the 

normal vectors to compute the between-class scatter matrix on 

a local basis in the neighborhood of the decision boundary, 

thereby relaxing the normality and homoscedasticity 

assumptions of the KFD. Also, we present some individual 

graphical results by plotting the actual ROC curves of the 

SKNDA, KNDA, KFD and KSVM for German and Breast 

Cancer datasets. Fig. 1 and Fig. 2 show the ROC curves of the 

four classifiers on the German and Breast Cancer datasets. 

The rule-of-thumb to judge the performance of a classifier 

from a ROC curve is “The best classification has the largest 

area under curve”. We can clearly see from the Fig. 1 and Fig. 

2 that SKNDA indeed leads to best ROC curves.  

According to table 4, as far as the face datasets are concerned, 

we can see that the proposed face recognition method based 

on SKNDA outperforms the other recognition systems based 

on KFD, KSVM and KNDA, in terms of recognition 

accuracy. This was expected, as the SKNDA takes into 

account subclass information and minimizes face classes 

dispersion caused by special circumstances, such as, light 

directions of imaging, differences of facial expression, pose 

and lighting variations and high variability in facial features, 

which would result in an improvement of the face recognition 

system performance.  

In addition, we present in table 3 the average training times, 

computed over 10 model runs, of the compared classifiers. 

From this table, we can clearly remark that SKNDA, KFD and 

KNDA outperform the KSVM in terms of running time. In 

fact, the KSVM scales with 𝑂(𝑁2) [35], where 𝑁  is the 

number of data samples, whereas each of the KFD, KNDA 

and SKNDA scales with a computational complexity of 

𝑂(𝑁3) [6], but requires only one iteration to converge. Here, 

the SKNDA and KNDA have a slight overhead running time, 

since they are based on the κ nearest neighbors estimation. 

Table 2. Number of subclasses of each class for the 13 real-

world datasets 

Dataset name  Number 

of class1 

samples 

Number 

of class2 

samples 

Number of 

classes 

Number 

of 

features 

Breast Cancer 233 430 2 9 

diabetes 268 500 2 8 

diabetes1 268 500 2 7 

German 700 300 2 24 

Heart Disease 134 159 2 13 

liver 145 200 2 6 

Thyroid 150 35 2 5 

Ionosphore 225 126 2 34 

Haberman's 

survival 

225 81 2 3 

Twonorm 3697 3703 2 20 

Waveform 3304 1696 2 21 

SPECT 212 55 2 44 

Ringnorm 3736 3664 2 20 

 

Table 3 Average AUC, Confidence and Training Time  

(in Seconds) of each method for the 13 real-world datasets 

(best method in bold, second best emphasized). 

Dataset name KSVM KFD KNDA SKNDA 

Breast Cancer 77.9 77.8 92.53 95.8 

diabetes 78.10 77.7 79.89 82.2 

diabetes1 74.70 73.26 80.37 82.85 

German 79.10 78.8 91.30 93.51 

Heart Disease 85.64 83.4 85 87.79 

liver 78.74 78.20 80.69 81.2 

Thyroid 96.62 95.98 97.3 98.7 

Ionosphore 85.56 83.8 90.23 92.89 

Haberman's survival 84.5 83.87 89.55 90.19 

Twonorm 97.5 95.3 97.85 98.2 

Waveform 91.4 90 93 93.78 

SPECT 87.72 84.1 90.35 91.18 

Ringnorm 97.90 96.2 98.22 98.67 

Avg.time 4.15 2.60 2.68 2.67 

confidence 99.6 99.8 97.4 - 
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Figure 1. ROC curves for the SKNDA and the three 

classifiers applied on German 

 

 

Figure 2. ROC curves for the SKNDA and the three 

classifiers applied on Breast Cancer. 

 

Table 4.  Classification accuracy of each classifier on the face 

databases (best method in bold, second best emphasized). 

Database KSVM KFD KNDA SKNDA 

UMIST 91.79 90.90 97.0 97.80 

AR 88.6 87.81 95.20 95.73 

YALE 90.2 89.54 96.09 97.7 

FRAV2D 77.8 76.12 85.54 89.3 

PIE 80.7 79.6 87.15 90.9 

 

CONCLUSION  

In this paper, we have proposed a novel face recognition 

system based on Subclass Kernel Nonparametric Discriminant 

Analysis (SKNDA). This latter is advantageous since it 

minimizes the dispersion of the samples within each subclass 

and between subclasses, while capturing correctly the 

structural information between class boundaries, in order to 

improve classification performance and system discriminatory 

power. Moreover, the SKNDA between-class scatter matrix is 

estimated on a local basis, using Nearest Neighbours method 

(KNN), to deal with non-normal and heteroscedastic data in a 

proper manner. Also, SKNDA is based on kernelization to 

realize flexible non-linear separation between face classes, 

thereby handling nonlinearly separable data.  

As far as face recognition is concerned, our novelty lies in the 

efficiency of utilizing facial feature extraction method, which 

integrates the benefit of combining distinctiveness of Gabor 

features with robustness of ordinal measures, as a relevant 

solution to simultaneously handle intra-person variations and 

inter-person similarity face images. 

We performed evaluation and comparison of the SKNDA to 

relevant state-of-the-art classification algorithms KSVM, 

KFD, and KNDA on real world datasets and face datasets. 

Experiments showed the effectiveness of the proposed novel 

face recognition system and the superiority of the SKNDA in 

terms of classification and face recognition performance. 

In future work, we will investigate effectiveness of SKNDA 

in other recognition problems. 
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