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Abstract 

Most of the researchers use the transformation (x - ut) in order 

to evaluate the advection-dispersion equation of a fluid in the 

porous media. We have used boundary conditions C = 0 at x = 
 and C = C0 at x = – for t > 0 which gives the solution in a 

symmetrical concentration distribution. The objective of the 

problem is to find the analytical solution of differential 

equation in longitudinal direction that avoids the 

transformation which gives the solution to an asymmetrical 

concentration distribution. It will be shown that the solution 

approaches by symmetrical boundary conditions, provided that 

D dispersion coefficient is very small and the region nearer to 

the source will not be consider. The solution has been obtained 

for the dispersion model of longitudinal, mixing with the 

variable coefficient in finite length solute free domain initially. 

In the beginning, homogeneous domain is studied for 

dependent advection-dispersion equation along with the 

uniform flow. The solution is obtained for the uniform velocity 

by considering the spatially dependent variable due to 

heterogeneity of domain and dispersion, proportional to square 

of the velocity. The velocity is linearly interpolated along finite 

domain with small increment. The input condition has been 

considered for continuous of uniform flow and of increasing 

nature. The solutions are obtained for both the domains by 

using integral solution technique and Duhamel’s theorem. The 

independent space and time variables processes has been 

considered. The effects of the dispersion dependency with time 

and the heterogeneity of the domain in solute transport are 

discussed with the help of graphs. 

Keywords:  Dispersion Coefficient, Adsorption, Duhamel’s 

theorem, Uniform Flow, Aquifers. 

I. INTRODUCTION 

In recent years, considerable interest and attention have been 

directed to dispersion phenomena in flow through porous 

media. Scheidegger (1954), deJong (1958), and Day (1956) 

have presented statistical means to establish the concentration 

distribution and the dispersion coefficient. Advection–

dispersion equation explains the solute transport due to 

combined effect of convection and dispersion in a medium. 

Some of the one-dimensional solutions have been given (Tracy 

1995, Sudheendra 2011) by transforming the non-linear 

advection–diffusion equation. A method has been given to 

solve the transport equations for a kinetically adsorbing solute 

in a porous medium with spatially varying velocity field and 

dispersion coefficients (Van Kooten 1996, Sudheendra 2012). 

An analytical approach was developed for non-equilibrium 

transport of reactive solutes in the unsaturated zone during an 

infiltration–redistribution cycle (Severino and Indelman 2004, 

Sudheendra 2014). 

 

The solute is transported by advection and obeys linear 

kinetics. Analytical solutions were presented for solute 

transport in rivers including the effects of transient storage and 

first order decay (Smedt 2006, Sudheendra 2012). Pore flow 

velocity was assumed to be a non-divergence, free, unsteady 

and non-stationary random function of space and time for 

ground water contaminant transport in a heterogeneous media 

(Sirin 2006). A two-dimensional semi-analytical solution was 

presented to analyze stream–aquifer interactions in a coastal 

aquifer where groundwater level responds to tidal effects (Kim 

et al 2007). 

 

A more direct method is presented here for solving the 

differential equation governing the process of dispersion. It is 

assumed that the porous medium is homogeneous and isotropic 

and that no mass transfer occurs between the solid and liquid 

phases. It is assumed also that the solute transport, across any 

fixed plane, due to microscopic velocity variations in the flow 

tubes, may be quantitatively expressed as the product of a 

dispersion coefficient and the concentration gradient. The flow 

in the medium is assumed to be unidirectional and the average 

velocity is taken to be constant throughout the length of the flow 

field. In this paper, the solutions are obtained for two solute 

dispersion problems in a longitudinal finite length. In this 

problem, time dependent solute dispersion of increasing or 

decreasing nature along a uniform flow through a homogeneous 

domain is studied. In the second problem the medium is 

considered heterogeneous, hence the velocity is considered 

dependent on position variable. The velocity is linearly 

interpolated in position variable which represents a small 

increment in the velocity from one end to the other end of the 

domain. This expression contains a parameter to represent a 

change in heterogeneous from one medium to other medium. 

Dispersion is assumed proportional to square of velocity. 

II. TEMPORALLY DEPENDENT DISPSERSION ALONG 

UNIFORM FLOW 

Because mass is conserved, the governing differential equation 

is determined to be  
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where C is solute concentration at position x along the 

longitudinal direction at time t, D is dispersion coefficient and 

u is the average velocity of fluid or superficial velocity. To 

study the temporally dependent solute dispersion of a uniform 

input concentration of continuous nature in an initially solute 

free finite domain, we consider 

 mtfDtxD 0),(   and 0),( utxu                   (2) 

When m is a coefficient whose dimension is inverse of the time 

variable. Thus f(mt) is an expression in non-dimensional 

variable (mt). The expression of f(mt) = 1 for m = 0 or t = 0. 

The former case represents the uniform solute dispersion and 

the latter case represents the initial dispersion. The coefficients 

D0 and u0 in equation (2) may be defined as initial dispersion 

coefficient and uniform flow velocity, respectively. Thus the 

partial differential equation (1) along with initial condition and 

boundary conditions may be written as: 
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Initially, saturated flow of fluid of concentration, C = 0, takes 

place in the medium. At t = 0, the concentration of the plane 

source is instantaneously changed to C = C0. Thus, the 

appropriate boundary conditions are  
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The problem then is to characterize the concentration as a 

function of x and t. where the input condition is assumed at the 

origin and a second type or flux type homogeneous condition 

is assumed. C0 is initial concentration. To reduce equation (3) 

to a more familiar form, we take  
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Substituting given equation into equation (3) gives 

 
2

2

0 x
mtfD

t 







               (6) 

The initial and boundary conditions (3) transform to    

 
 

 

00),(

00)0,(

0
1

4
exp1),0(

0

2
0

0
















 
 

tt
xx

t
n

tnk
mtfD

tu
eCt dt

    

(7) 

It is thus required that equation (6) may be solved for a time 

dependent influx of the fluid at x = 0. The solution of equation 

C(x, t) may be obtained readily by use of Duhamel’s theorem 

[Carslaw & Jeager 1949].  

 

If  tzyxFC ,,,  is the solution of the diffusion equation 

for semi-infinite media in which the initial concentration is 

zero and its surface is maintained at concentration unity, then 

the solution of the problem in which the surface is maintained 

at temperature  t is 

               dtzyxF
t

C
t

 





0

,,,    

This theorem is used principally for heat conduction problems, 

but the above has been specialized to fit this specific case of 

interest. Consider now the problem in which initial 

concentration is zero and the boundary is maintained at 

concentration unity. The boundary conditions are 
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The problem is readily solved by application of the Laplace 

transform which is defined as 
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Hence, if equation (6) is multiplied by 
pte

 and integrated 

term by term it is reduced to an ordinary differential equation 
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The solution of the above equation is 
qxqx eCeC 21  

 

where, d
pq  .  

The boundary condition as x  requires that 02 C and 

boundary condition at 0x  requires that pC 1
1  thus the 

particular solution of the Laplace transformed equation is 

qxe
p
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The inversion of the above function is given in any table of 

Laplace transforms. The result is  
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Utilizing Duhamel’s theorem, the solution of the problem with 

initial concentration zero and the time dependent surface 

condition at x =0 is  
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Since 
2e is a continuous function, it is possible to 

differentiate under the integral, which gives 
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The solution to the problem is  
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Putting 
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 then the equation (11) can be 

written as 
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Since    
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particular solution of the problem may be written as 
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where, 
)(4
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III EVALUATION OF THE INTEGRAL SOLUTION 

The integration of the first term of equation (13) gives 
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For convenience the second integral may be expressed on 

terms of error function (Horenstein, 1945), because this 

function is well tabulated. 

 

The second integral of equation (14) may be written as 
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Since the method of reducing integral to a tabulated function is 

the same for both integrals in the right side of equation (13), 

only the first term is considered. Let z  and adding and 

subtracting. The integral may be expressed as  
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Further, let, 
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  in the first term of the above 

equation, then 
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Similar evaluation of the second integral of equation (13) 

gives 
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Again substituting z
z



  into the first term, the result  
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Substitution into equation (10) gives 
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Thus, equation (13) may be expressed as 

 
   



















































 





 































deedee

n
tnk

mtfD
tueC

tx d
t

22 22

0

2

0

2

1

2
                 

1

)(4
exp

12
,

   (19)

 

However, by definition, 
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Writing equation (19) in terms of error functions, we get 
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Thus, Substitution into equation (5) the solution is  
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Re-substituting for  and  gives 
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Re-substitute the value of the u in terms of u0, we get 
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where boundaries are symmetrical the solution of the problem 

is given by the first term the equation (21). The second term is 

equation (21) is thus due to the asymmetric boundary imposed 

in the more general problem. However, it should be noted also 

that if a point a great distance away from the source is 

considered, then it is possible to approximate the boundary 

condition by   0, CtC  , which leads to a symmetrical 

solution. 

 

IV SPATIALLY DEPENDENT DISPERSION ALONG  

NON-UNIFPORM FLOW 

 

The heterogeneity of porous domain was defined by scale 

dependent dispersion and flow through the medium has been 

considered uniform Yates (1992) but the flow velocity may 

also depend upon position variable in case the domain is 

heterogeneous. Zoppou and Knight (1997) have considered the 

velocity as xu  , and the solute dispersion proportional to 

square of velocity, i.e., as 
2xD  ; in a semi-infinite domain 

 xx0 . But these expressions do not reflect real 

variations due to heterogeneity of the medium because as 

x , dispersion and velocity also become too large. In fact 

the variation in velocity due to heterogeneity should be small 

so that the velocity at each position satisfies the Darcy’s law in 

case the medium is porous or satisfies the laminar condition of 

the flow in a non-porous medium, an essential conditions for 

the velocity parameter, u in the advection-diffusion equation. 

This factor is taken care of in the present work and velocity is 

linearly interpolated in position variable such that it increases 

from a value u0 at x = 0 to a value   01 ub at x = L, where b 

may be a real constant. Thus 

)1(),( 0 axutxu  ,                              (22) 

Where Lba  , is the parameter accounting for the 

heterogeneity of the medium. It should be small so that the 

increase in velocity is of small order. Solute dispersion is 

assumed proportional to square of the velocity so we consider 
2

0 )1(),( axDtxD  .                    (23) 

As ax is a non-dimensional term hence D0 and u0 are dispersion 

coefficient and velocity, respectively at the origin (x = 0) of the 

medium. The domain is assumed initially solute free. An input 

concentration is assumed at the origin and a flux type 

homogeneous condition is assume at the other end of the 

domain. Then advection-diffusion equation assumes the form 
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It is further reduced into a partial differential equation with 

constant coefficients by using a transformation. Ultimately we 

use the same initial and boundary conditions to solve the above 

dispersion problem for dependent dispersion non-uniform. The 

procedure is same as solved in the earlier case. Then the desired 

solution may be written as  
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A plot of logarithmic probability graph of the above solution is 

given for various values of the dimensionless group

xuD 00 . The figure shows that as  becomes small the 

concentration distribution becomes nearly symmetrical about 

the value  = 1 (i.e., xtu0 ). However, for large values of 

 asymmetrical concentration distributions become noticeable. 

This indicates that for large value of D or small values of 

distance x the contribution of the second term in equation (25) 

becomes significant as  approaches unity.  

 

V  RESULTS AND DISCUSSION 

 

Concentration values are evaluated from the four analytical 

solutions discussed in a finite domain at times t (years) = 1.0, 

2.0, 3.0 and 4.0, for input values C0 = 1.0, u0 = 0.11 (km/year), 

D0 = 50 (km2/year).  Figures 1 represents temporal dependent 

concentration dispersion pattern of uniform input and input of 

increasing nature, respectively along a uniform flow through a 

homogeneous medium, described by the analytical solutions, 

equation (21), respectively. In figure 1, the uniform input 

concentration value is 1.0 at all times and the concentration 

value at x = 0 increases with time. Thus the respective input 

boundary conditions are satisfied. In the figure the dotted 

curves represents the solutions for an expression f(mt) = 

exp(−mt) which is of decreasing nature. In the figures the solid 

curve represents the respective solutions at t = 1.0 (year), for 

another expression f(mt) = exp(mt), which is of increasing 

nature. It may be observed that in case of uniform input the 

concentration value at a particular position is higher for the 

latter expression of f(mt) than that for the former expression of 

f(mt). The difference increases with the distance along the 

domain. But in case of an input concentration of increasing 

nature its value is less for increasing nature of f(mt) than that 

for decreasing nature of f(mt). This trend is of diminishing 

nature up to x = 2.0, beyond which the trend reverses. For all 

the curves drawn in figure 1, a value m (year) −1 = 1.0 is 

chosen. Both the analytical solutions of section 2 may be solved 

using other expressions of f(mt) which satisfy the conditions 

stated at the outset of the section 2.  
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Figure 1: Temporal dependent solute dispersion along uniform 

flow of uniform input described by solution (equation 21). 

 

 
Figure 2: Break through curve for dispersion along with 

uniform flow. 

 

 
Figure 3: Spatially dependent solute dispersion along non-

uniform flow of uniform input described by solution (Equtionn 

25). 

 
Figure 4: Break through curve for dispersion 

along with non-uniform flow. 

 

The distribution is symmetrical for values of x chosen some 

distance from the source. An example of break through curves 

obtained for dispersion in a cylindrical vertical column is 

shown as Figure 2. The theoretical curve was obtained by 

neglecting the second term of equation (21).  

 

Figure 3 gives the concentration values evaluated from 

analytical solutions (equations 25) for spatially dependent 

dispersion of uniform input and input of increasing nature, 

respectively, along non-uniform flow, through an 

heterogeneous domain. The solid curves in figure 3 represent 

the solution in which a value a = 1.0 (km−1) is taken. Using 

expressions it may be evaluated that due to the heterogeneity of 

the medium, the velocity u varies from a value of 0.11 

(km/year) to a value of 0.22 (km/year) and dispersion D varies 

from a value of 0.21 (km/year) to a value of 0.42 (km/year), 

along the domain 0 ≤ x (km) ≤ 1. This figure also shows the 

effect of heterogeneity on the dispersion pattern. A dotted curve 

is drawn for the value a = 0.1 (km−1). It may be observed that 

the concentration values evaluated from the solution (equation 

25) along a medium of lesser heterogeneity (which introduces 

lesser variation in velocity and dispersion along the column), 

are slightly higher than those at the respective positions of a 

medium of higher heterogeneity, near the origin but decrease at 

faster rate as the other end of the medium is approached. This 

comparison is done at t = 2.0 (year). This value is chosen to 

ensure that the factor (u0 − aD0) in condition remains positive 

for the values chosen for u0 and D0. The distribution is 

symmetrical for values of x chosen some distance from the 

source. A break through curve is obtained for dispersion in for 

different depth as shown in Figure 4. The theoretical curve was 

obtained by neglecting the second term of equation (25).  

 

VI CONCLUSIONS 

 

Consideration of the governing differential equation for 

dispersion in flow through porous media give rise to a solution 

that is not symmetrical about x = u0 t for large values of . 

Experimental evidence, however, reveals that D0 is small. This 

indicates that, unless the region close to the source is 

considered, the concentration distribution is approximately 

symmetrical. Theoretically, 
2

1
0
C

C  only as   0; 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 1 (2018) pp. 109-114 

© Research India Publications.  http://www.ripublication.com 

114 

however, only errors of the order of magnitude of experimental 

errors are introduced in the ordinary experiments if a 

symmetrical solution is assumed instead of the actual 

asymmetrical one. 

 

The solution is obtained for one dimensional advection – 

diffusion equation with variable coefficients along with two set 

of boundary conditions in an initially solute free finite domain 

have been obtained in two cases: 

 

 temporal dependent dispersion along with uniform 

flow through homogeneous medium and 

 spatially dependent dispersion along non-uniform 

flow through heterogeneous medium which solute 

dispersion is assumed proportional to the square of 

velocity. 

 

The application of a new transformation which introduces 

another space variable, on the advection-diffusion equation 

makes it possible to use Laplace transformation technique in 

getting the solution. Numerical solution has been obtained 

using a two-level explicit finite difference scheme. The 

respective analytical and numerical solutions have also been 

compared and very good agreement between the two has been 

found. The analytical solution of the second problem in case of 

uniform input has been compared with the numerical solution 

of same problem but assuming dispersion varying with 

velocity. Such analytical solutions may serve as tools in 

validating numerical solutions in more realistic dispersion 

problems facilitating to assess the transport of pollutants solute 

concentration away from its source along a flow through soil 

medium, through aquifers and through oil reservoirs. 
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