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Abstract

We develop Cresson’s nondifferentiable embedding to quantum problems of
the calculus of variations and optimal control with time delay. Main results show
that the dynamics of nondifferentiable Lagrangian and Hamiltonian systems with
time delays can be determined, in a coherent way, by the least-action principle.

AMS Subject Classifications: 49K05, 49505, 26A24.
Keywords: Nondifferentiability, scale calculus of variations, scale optimal control,
Euler-Lagrange equations, embedding, coherence, time delay, Hamiltonian systems.

1 Introduction

Lagrangian systems play a fundamental role describing motion in mechanics. The im-
portance of such systems is related to the fact that they can be derived via the least-action
principle using differentiable manifolds [4]. Nevertheless, some important physical sys-
tems involve functions that are nondifferentiable.

A nondifferentiable calculus was introduced in 1992 by Nottale [13, 14]. A rigorous
foundation to Nottale’s scale-relativity theory was recently given by Cresson [5, 6, 8].
The calculus of variations developed in [8] cover sets of nondifferentiable curves, by
substituting the classical derivative by a new complex operator, known as the scale
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derivative. In [2,3] Almeida and Torres obtain several Euler-Lagrange equations for
variational functionals and isoperimetric problems of the calculus of variations defined
on a set of Holder curves.

The embedding procedure, introduced for stochastic processes in [7], can always
be applied to Lagrangian systems [9, 15]. In this work we prove that the embedding
of Lagrangian and Hamiltonian systems with time delays, via the least-action principle,
respect the principle of coherence. For the importance of variational and control systems
with delays we refer the reader to [10] and references therein.

The article is organized as follows. A brief review of the quantum calculus of [8],
which extends the classical differential calculus to nondifferentiable functions, is given
in Section 2. In Section 3 we discuss the nondifferentiable embedding within the time
delay formalism: Section 3.1 is devoted to the development of the nondifferentiable
embedding to variational problems with time delay, where a causal and coherent em-
bedding is obtained by restricting the set of variations; in Section 3.2 we prove that
the nondifferentiable embedding of the corresponding Hamiltonian formalism is also
coherent.

2 The Quantum Calculus of Cresson

Let X? denote the set R or C%, d € N, and I be an open set in R with [t1,t5] C I,
t; < to. We denote by G (], Xd) the set of functions f : I — X% and by C° (I, Xd) the

subset of functions of G (1, X") that are continuous.

Definition 2.1 (The e-left and e-right quantum derivatives). Let f € C° (I , Rd). For all
€ > 0, the e-left and e-right quantum derivatives of f, denoted respectively by A~ f and
Al f, are defined by

ft)—flt—e

€

At - LETEY 0}

Remark 2.2. The e-left and e-right quantum derivatives of a continuous function f cor-
respond to the classical derivative of the e-mean function f7 defined by

and ATf(t)=

o t+oe
=2 seas. o=x.
€ Ji
Next we define an operator that generalizes the classical derivative.

Definition 2.3 (The e-scale derivative). Let f € C° (I,R?). For all € > 0, the e-scale

Oef .
derivative of f, denoted by Dz;f , 1s defined by
Of 1
Ot 2

where ¢ is the imaginary unit.

[(ATf+ATf) =i (AT f = A7 )],
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Remark 2.4. 1f f is differentiable, we can take the limit of the scale derivative when ¢

d
goes to zero. We then obtain the classical derivative d_]; of f.

We also need to extend the scale derivative to complex valued functions.

Definition 2.5. Let f € C° (I, C?) be a continuous complex valued function. For all

O.f .
€ > 0, the € scale derivative of f, denoted by th, is defined by

Ocf  ORe(f) +Z,D€Im(f)
Ot Ot Ot

where Re(f) and Im( f) denote the real and imaginary part of f, respectively.

In Definition 2.3, the e-scale derivative depends on €, which is a free parameter
related to the smoothing order of the function. This brings many difficulties in applica-
tions to Physics, when one is interested in particular equations that do not depend on an
extra parameter. To solve these problems, the authors of [8] introduced a procedure to
extract information independent of € but related with the mean behavior of the function.

Definition 2.6. Let C,,, (I x (0,1),R?) € C° (I x (0,1),R?) be such that for any

function f € C2,,, (I x (0,1),R?) the lir% f(t,€) exists for any ¢ € I; and E be a com-
e—

plementary of CJ,, (I x (0,1),R?) in C° (I x (0,1),R?). We define the projection
map 7 by

T C° (IX (O,l),Rd) ®E — C°

conv conv

fCOTLU + fE — fcom}

(I x (0,1),R%)

and the operator (-) by
() C°(Ix(0,1),RY) — C°(I,RY
f = (f) t— lm7(f)(te€).
e—0
We now introduce the quantum derivative of f without the dependence of e [8].

Definition 2.7. The quantum derivative of f in the space C° (I, R?) is given by the rule

Br_ <fo>. 2.1)

O\ Ot

The scale derivative (2.1) has some nice properties. Namely, it satisfies a Leibniz
and a Barrow rule. First let us recall the definition of an c-Ho6lderian function.

Definition 2.8 (Holderian function of exponent av). Let f € C° (I,R?). We say that f
is a-Holderian, 0 < o < 1, if forall e > 0 and all ¢, ' € I there exists a constant ¢ >
such that |t — /| < e implies || f(t) — f(t')|| < ce®, where || - || is a norm in R?. The set
of Holderian functions of Holder exponent « is denoted by H° (1, R?).



52 G. S. F. Frederico and D. F. M. Torres

In what follows, we will frequently use [ to denote the scale derivative operator o

Theorem 2.9 (The quantum Leibniz rule [8]). For f € H* (I,R?) and g € H” (1,R?),
with o + 8 > 1, one has

O(f - 9)(t) = Of () - g(t) + f(£) - Dg(t) - (2.2)
Remark 2.10. For f € C! ( ,R ) and g 6 c! (I ]Rd) one obtains from (2.2) the clas-
sical Leibniz rule (f - g)' = f' - g + f - ¢’. For convenience of notation, we sometimes
)= f(t) -

write (2.2) as (f - 9)°(t) = f2(t) - g(t) + f(t) - g°(2).

Theorem 2.11 (The quantum Barrow rule [8]). Let f € C°([t1,ts],R) be such that

Of /Ot is continuous and
to Def
li = 0. 2.
iy [T, ar=c 23

Then,
to Df
| = s - ),

1

3 The Nondifferentiable Embedding with Time Delays
Given two operators A and B, we use the notations

(A-B)(y) = Ay)B(y) and (Ao B)(y) = A(B(y))-
Definition 3.1 (The kth scale derivative). Let k € N. The operator O* is defined by

O O O
k = — = — e _
= Ot ot O G-D

g
where o appears exactly k£ times on the right-hand side of (3.1).
Definition 3.2 (The backward shift operator p”). Given 7 > 0, the backward shift oper-
ator p” is defined by p"(t) =t — 7.
Definition 3.3 (The operators [-]~" and []¥). Let 7 > 0, k € N. For convenience, we
introduce the operators [-|~" and []* by

T

W2 () = (£, y(t), Oy(t), ..., OFy (), (y o p) (&), (Ty 0 p)(t), ..., (OFy o p7)(1))

WIEE) = (ty®), ¥’ @), .. yP (), (o p7) (@), (¥ 0 pT) (), ..., (¥ 0 p7)(2)).
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When k = 1, we omit k and use 9 to denote the derivative 7/, that is:

and
[y]‘r<t) = (t> y(t)> y(t)> y(t - T)a y(t - 7—))
Given a function f : R x ((Cd) D, €, we denote by F*7 the corresponding
evaluation operator defined by F*™ = f[.]*, that s,

c’(r,cyy — C°(,C)

k., .
ey — e fl().

Let f = {fi}ico,.n and g = {gi}i=0,. » be a finite family of functions f;, ¢g; :
(Cd) Y €, and FF™and G¥7,i = 1,...,n, be the corresponding family of
evaluation operators. We denote by O . the differential operator

O/M ZFJW< d' Gkr) (3.2)

d 0
with the convention that (E) is the identity mapping on C. As before, we omit k
when k = 1: Of , = Oy

Definition 3.4 (Nondifferentiable embedding of operators with time delay). The non-
differentiable embedding of (3.2), denoted by Emb (O’;’;), is given by

Eme( ) ZFD" (D; GEk’T),

2 7 T

F7'7 = Embg(F7) = fi[] =i Embg <d ) G = Emby(G7) = g,

3.1 Embedding of Variational Problems with Time Delay
The fundamental problem of the calculus of variations with time delay is to minimize
to
o= [ L(ta(o.dle).alt - 7t - 7)) di (.3
t1

subject to ¢(t) = d(t), t € [t; — 7,t1], and q(t2) = qo, where t; < to are fixed in R,
T is a given positive real number such that 7 < t5 — t1, d is a given piecewise smooth
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function, and ¢; € R%. We assume that admissible functions ¢ are such that both ¢ and
qo p” belong to C ! (I , Rd). Note that, with our notations, (3.3) can be written as

to

Il = [ Ll (0
t1

A variation of ¢ € C' (I,R?) is another function of C' (I, R?) of the form ¢ + ch

with € a small number and h € C* (I, R?) such that h(t) = O for ¢ € [t; — 7, t1] U {t2}.

Definition 3.5 (Extremal). We say that ¢ is an extremal of funcional (3.3) if

d T
d_E I [y"f'the:O =0

for any h € C! (I,]Rd).

A first idea to obtain a nondifferentiable Lagrangian system with time delays is to
embed directly the classical Euler—Lagrange equations with time delays.

Theorem 3.6 (Euler-Lagrange equations with time delay [1,12]). A function q € C' (I, R?)
is an extremal of (3.3) if and only if

1 Lalalo(8) + L [l (¢ 4+ 7)

dt
= Lolq)+(t) + Lg, [ql-(t+7), t1 <t <ty—r, (EL)

SLfae )= Ll (t), tr-r<t<t

where Le(t, q, 4, qr, §;) denotes the partial derivative of L(t, q, q, ¢, §-) with respect to
£ E {q7 q‘? qT? q‘T}'

The following theorem gives the nondifferentiable embedding of the Euler—Lagrange
equations with time delay (EL). By C (I , Xd) we denote the set of functions ¢ such that

both g and g o p” belong to C° (1,X%) as well as (g and (O0'q) 0 p” foralli =1,...,n

Theorem 3.7. Let the Lagrangian L be a C} ([ , Rd) -function with respect to all its
arguments, holomorphic with respect to ¢(t) and §(t — 7), and real when ¢(t) and
§(t — 7) belong to RY. The nondifferentiable embedded Euler-Lagrange equations with
time delay associated to L are given by

OJ

= [LaldlP(0) + Lo [02(t + 7)]

O
=LJql2 () + Ly [q)P(t+7), tt <t <ty—1, (OFL)
O
S loldl? (1) = Lylal (), t2—7 <t <t

—_—
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Proof. The Euler-Lagrange equations (EL) can be written in the equivalent form

;,g(Q) (t) = 07 te [tla t2]>

with f and g given by

(_LQ[Q]T(t) _LqT[Q]T(t—'—T)?l) ift e [tlat? _T]

(—Lq[q].,-(t),l) ift € [tQ - T, tQ]
and
elal. () = (1, L4lq]-(t) + Ly [ql-(t + 7)) ift e[ty te — 7]
! (1, Lglq)- (1)) ift € [ty — 7,ta).
The intended conclusion follows now by a direct application of Definition 3.4. 0

Remark 3.8. The Euler-Lagrange equations (L1 L) reduce to (EL) when the functions
are differentiable.

Another approach to obtain a nondifferentiable Lagrangian system with time delays
is to embed the Lagrangian, and then to apply the least-action principle. The nondiffer-
entiable embedding of functional (3.3) is given by

to

Il = /tzL(t,qu),mq(t),q(t—T>,Dq<t—7>>dt: / Lt (34

t1 t1

In contrast with the original problem, the admissible functions ¢ are now not necessarily
differentiable: admissible functions ¢ for (3.4) are those such that ¢ € C}, (I ) ]Rd).

Leta, 5, € Rbesuchthat) < a, 8 < 1, o+ > 1 and |¢| < 1. A variation of ¢ €
H® (I, Rd) is another function of H“ (I, ]Rd) of the form ¢ + ¢h, with h € H? ([, Rd),
such that h(t) = 0fort € [t; — 7,t;] U {t2}.

Definition 3.9 (Nondifferentiable extremal). We say that ¢ is a nondifferentiable ex-
tremal of funcional (3.4) if

d T
e Ifly+e€h]|._, =0 (3.5)
for any h € H” (I,]Rd).

As in the classical case, the least-action principle has here its own meaning, i.e.,
we seek the nondifferentiable extremals of funcional (3.4) to determine the dynamics
of a nondifferentiable dynamical system. The next theorem gives the Euler—Lagrange
equations with time delay obtained from the nondifferentiable least-action principle.
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Theorem 3.10. Let 0 < o, 8 < 1L witha+ 3 > 1. If ¢ € H* (I,R?) satisfies Oq €
H (I,RY) and (Lry[q)7 (t) + Liog, [q]7(t)) - h(t) satisfies condition (2.3) for all h €
H” (] , Rd), then function q is a nondifferentiable extremal of 17, if and only if

o (BoldP(0) + Loy f2(-+7)
= L[q)7(t) + Ly, [q)7(t +7), t1<t<ty—r, (ELorap)
0J

gy Lodldly () = Loldl (1), =7 <t <ta.

Proof. Condition (3.5) gives

+/t2 (Lg, [q)2(t) - h(t = 7) + L, [q)7 (1) - Oh(t — 7)) dt = 0. (3.6)

t1

By the linear change of variables ¢ = s 4 7 in the last integral of (3.6), and having in
mind the fact that h(t) = 0 on [t; — 7, 1], equation (3.6) becomes

[rqu%maw+L%mﬂrmw-mw
T (LealdlP () + Lo [d2( + 7)) - OR()] dt

+/tg (Lglal7 () - h(t) + LoglglF(t) - Oh(t)) dt = 0. (3.7)

Using the hypotheses of the theorem, we obtain from Theorem 2.9 that

/”ﬂ(Lm[](>+LmJ](t+T».muwﬁ

t1

[ G {0 + Loy 2+ ) - hio)

1

to—T ]
- /n Ot (Loglal? () + Log, a7 (¢ + 7)) - h(t)dt (3.8)

and
[ bl onor

:/t;%(Lmq[qmt)‘h(t))dt—/i %(Lmq[fﬂ?(t)) h(t)dt. (3.9)

to—T
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Because (Log[q]7 () + Loy, [q)7 (t+ 7)) - h(t) satisfies (2.3) for all h € HP (I,RY),
using Theorem 2.11 and replacing the quantities of (3.8) and (3.9) into (3.7), we obtain

It
+ (LDQ[Q]E(t) + Lqu [q]g(t + 7-)) . h(t)‘tZ—T

" O O O 1 O t2
# [ B2 - 5 (Gald2)] e+ L)), =0

/t . {Lq[fJE (8)+ Ly [d2(t +7) — = (Loglal7 (t) + Log, [ql7 (¢ + 7)) | - h(t)dt

The Euler-Lagrange equations with time delay (£ Loy 4p) are obtained using the fun-
damental lemma of the calculus of variations (see, e.g., [11]). ]

To summarize, the dynamics of a nondifferentiable Lagrangian system with time de-
lay are determined by the Euler—Lagrange equations (£ Loy 4p), via the [1-least-action
principle, respecting the principle of coherence: (£ Loz 4p) coincide with (LUEL).

3.2 Embedding of Optimal Control Problems with Time Delay

In Section 3.1 we studied the nondifferentiable variational embedding in presence of
time delays. Now, we give a scale Hamiltonian embedding for more general scale prob-
lems of optimal control with delay time. Following [10, 12], we define the optimal
control problem with time delay as follows:

g, u] = /tQ L(t,q(t), qlt — 7),u(®), u(t — 7)) dt —> min,  (3.10)

i(t) = o (t.q(0), qlt — 7). u(t), ult = ) G

under given boundary conditions

Q(t) = (5<t), te [tl — T, tl] 3 Q(tQ) = ({2, (312)

where ¢ € C! (I, Rd), ueC’ (I, Rd), the Lagrangian L : [ x R?*? x R*™ — R and the
velocity vector ¢ : I x R?*? x R*™ — R? are assumed to be C'-functions with respect
to all its arguments. Similarly as before, we assume that J is a given piecewise smooth
function and ¢, a given vector in R%.

Definition 3.11. We introduce the operators [, |, [-, -, |-, [-,-]Z and [, ]2 by:

L. [q,ul(t) = (t,q(t),q(t — 7),u(t),u(t — 7)), where ¢ € C' (I,R?) and u €
C’(I,RY);

2. [q,u, pl,(t) = (t,q(t), q(t — 7),u(t), u(t — 7),p(t)), where ¢,p € C' (I,R?) and
ue (I,]Rd);



58 G. S. F. Frederico and D. F. M. Torres

4. [q,u,p] (t) = (t.q(t),q(t — 7),u(t),u(t — 7),p(t)), where ¢ € H* (I,R?) and
u,p € H® (I,(Cd).

Theorem 3.12 (See [10, 12]). If (q,u) is a minimizer to problem (3.10)—(3.12), then
there exists a co-vector function p € C* (I , ]Rd) such that the following conditions hold:

e the Hamiltonian systems
1(t) = H (),
p(t) = —Hylg,u, pl; (1) — Hy, g, u,pl-(t +7),
forty <t <ty —rT,and
i(t) = H (1),
p(t> - _Hq[Qa uap]’r(t) )
fortZ - T S t S t2;
e the stationary conditions
Hylq,u,pl-(t) + Hu,[q,u, pl-(t+7) =0, (3.15)

fort; <t <ty—rT,and
H.,[g,u, pl(t) =0, (3.16)

Jorty =7 <t <ty
where the Hamiltonian H is defined by H|q, u, p|,(t) = L{q, u].(t) + p(t) - ¢[q, u](¢).
Lemma 3.13. Let H[q,u,p|2(t) = L[g,u)7(t) + p(t) - ¢lq, u]Z(t). The embedding of
the Hamiltonian systems (3.13) and (3.14) are given, respectively, by
{Dq(t) = Hylq,u,pl;(t), (3.17)
Op(t) = —Hylg, u, pl; (t) — Ho, g, u, pl7 (¢ +7),
forty <t <ty — T, and by

Op(t) = —Hylg, u, pl7 (1),

forty — 1 < t < to; the embedding of the stationary conditions (3.15) and (3.16) are
given, respectively, by

Hy[q,u,p)7(t) + Hy,[q,u,pl7(t +7) =0, (3.19)
forty <t <ty — T, and by

{Dq(t) = H,[q,u, p]7 (1), (3.18)

H,lq,u,p)7(t) =0, (3.20)
forto — 7 <t <t
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Definition 3.14. We call systems (3.17) and (3.18) the scale Hamiltonian systems with
delay, while to (3.19) and (3.20) we call stationary conditions with delay.

Lemma 3.15. The embedding of (3.10)—(3.11) is given by

g, u] = / Lt () gt — 1) ul),ult — 7)) dt —s min,  (321)

t1
where q,qo p’ € H® ([,Rd) and u,uop’ € H* (I, (Cd).

Theorem 3.16 generalizes Theorem 3.12 for nondifferentiable optimal control prob-
lems with time delay.

Theorem 3.16. Let 0 < o, § < 1 witha+ 3 > 1. Assume that g € H® ([, Rd) satisfies
Og € H* (I,RY) and (Log[q)5(t) + Log, [ql5(t)) - k() satisfies condition (2.3) for all
h € HP (I,Rd). If (q,u) is a minimizer to problem (3.21)—(3.22) subject to given
boundary conditions (3.12), then there exists a co-vector function p € H* (I , Cd) such
that the following conditions hold:

e the scale Hamiltonian systems with delay (3.17) and (3.18);

e the stationary conditions with delay (3.19) and (3.20).

Proof. We prove the theorem only in the interval t; < ¢t < {5 — 7 (the reasoning is
similar in interval £, — 7 < t < ¢5). Using the Lagrange multiplier rule, (3.21)—(3.22)
is equivalent to minimize the augmented functional J7[q, u, p] defined by

Jhlg, u,p] = /t2 [H (t,q(t),q(t — 7),u(t),u(t —7),p(t) — p(t) - Og(t)] dt. (3.23)

t1

The necessary optimality conditions (3.17) and (3.19) are obtained from the Euler—
Lagrange equations (£ Loz 4p) applied to functional (3.23):

(= (Loulg, w, pI5(0) + Log. g, w, pl5(t + 7))

- Lqlg, u, pI6(t) + L, g, u, pI5(E + 7)

S (el w,PIE(E) + Lo Loy, (¢ + 7))
Lulg, u, pI5(t) + La [g, u, Py (t + 7)

= (Loyla,u, pIE(0) + Loy g w, It + 7))

( = Lplg, uw, (1) + Ly, [g, w, PIG(E + 7)

Op(t) = —Hy[g, w, pl5(t) — Hy, [g, w, plo(t + 7)
& 0= Hy[q,u,p|5(t) + Hy, [q,u, pl5(t +7)
0= _DQ(t) + Hp[q’ UaP]E(t)a

where L[q, u, p|55(t) = H|q, u, p]5(t) — p(t) - Oq(t). O

q
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Remark 3.17. In the differentiable case Theorem 3.16 reduces to Theorem 3.12.

Remark 3.18. The first equations in the scale Hamiltonian system with delay (3.17) and
(3.18) are nothing else than the scale control system (3.22).

Remark 3.19. In classical mechanics, p is called the generalized momentum. In the
language of optimal control, p is known as the adjoint variable [16].

Definition 3.20. A triplet (¢, u,p) satisfying the conditions of Theorem 3.16 will be
called a scale Pontryagin extremal.

Remark 3.21. If ¢ (t,q,q;,u,u,;) = u, then Theorem 3.16 reduces to Theorem 3.10.
Let us verify this in the interval t; < ¢t < t5 — 7 (the procedure is similar for to — 7 <
t < ty). The stationary condition (3.19) gives p(t) = Ly[q]2(t) + Ly, [¢]Z(t + 7) and
the second equation in the scale Hamiltonian system with delay (3.17) gives Op(t) =
L,[q)7(t) + L,.[q)2(t). Comparing both equalities, one obtains the nondifferentiable
Euler-Lagrange equations with time delay (#Lgopap). In other words, the scale Pon-
tryagin extremals (Definition 3.20) are a generalization of the nondifferentiable Euler—
Lagrange extremals (Definition 3.9).

We conclude from Theorem 3.16 that the coherence principle is also respected for
nondifferentiable optimal control problems with time delay.
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