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Abstract:  

This paper describes the design of a nonlinear linearizing 
controller based on feedback linearizing method to stabilize a 
nonlinear magnetic levitation system. The linearized model 
states are selected through input-state linearization, and the 
mathematical expression of the linearizing controller is 
obtained. An additional innovative integral LQR is designed to 
make the closed-loop system more robust. The closed-loop 
system is implemented in real-time on an IEC 61499 standard-
based programmable logic controller using a new model 
transformation technique. The closed-loop system is simulated 
in MATLAB/SIMULINK and TwinCAT 3 real-time 
environment, and the simulation results obtained on both 
environments are compared.  

Key words: IEC, levitation, linearization, nonlinear, PLC, 
real-time, TwinCAT. 

 

1. INTRODUCTION 

Feedback linearization is one of the most attractive nonlinear 
control design method which is used in most of the researches 
related to the field of nonlinear control [1,5]. The concept of 
feedback linearization is to mathematically perform the 
transformation of the dynamics of a nonlinear system into a 
fully or partly linear one, so that it is possible to apply linear 
control methods [2]. The idea of feedback linearization is to 
get rid of the nonlinearities of a system and impose a desired 
linear dynamic that can be directly applied to a category of 
nonlinear systems described in companion, or controllability 
canonical form.  

The implementation of feedback controllers in distributed 
control system has gained interest in the past decades. In 
distributed control system configuration, feedback controllers 
are connected to the rest of the system by network for 
communication and monitoring. To materialize these features, 
the International Electro-Technical Commission (IEC) 
developed an open architecture for the next generation of 
distributed control and automation: IEC 61499 standard. To 
demonstrate the functionality of IEC 61499 a magnetic 
levitation system (Maglev) is selected as a plant to be 
controlled because it is a highly nonlinear system that suits 
well with the basic IEC 61499 strategies.  The closed loop 

control of the Maglev system is done in 
MATLAB/SIMULINK; the system closed loop is then 
transformed in basic function blocks based on a full block to 
block transformation method in IEC 61499 environment 
designed on Beckhoff TwinCAT 3 software. Once the 
simulation shows the expected results, then the Function 
Blocks closed loop system can be deployed to the physical 
PLC. 

This paper shows the development of a nonlinear control 
algorithm to stabilize a highly unstable magnetic levitation 
system. The closed-loop system is simulated in 
MATLAB/SIMULINK environment. The real-time 
implementation of the control algorithm is done on TwinCAT 
3 simulation environment then downloaded into a Beckhoff 
CX 5020 Programmable Logic Controller (PLC) for testing. 
The closed loop system is entirely assessed on PLC platform. 

The paper is structured as follows: modeling of the system is 
presented in part 2. The input-state/input-output linearization is 
described in part 3. Further, the linear control of the Brunovsky 
system based on ILQR (Integral Linear Quadratic Regulator) 
method is discussed in part 4. The results of the simulation 
with both the input-state/input-output linearizing and linear 
control are presented in part 5. In part 6, the real-time 
implementation of the closed-loop transformed system based 
on IEC 61499 methodology is presented. A real-time 
implementation and simulation of a parallel control system of 
two levitation systems is proposed in part 7, and finally the 
conclusion is made based on the results obtained. 

 

2. MODELING AND SIMULATION OF THE 

MAGNETIC LEVITATION SYSTEM 

Magnetic levitation is a fairylike phenomenon which has 
always captivated the attention of people. It is an interesting 
highly non-linear and open loop unstable system suitable for 
control systems applications. Nowadays levitation has the 
potential to improve numerous sectors such as levitation 
vehicles, magnetic bearings, aerodynamics and noise 
mitigation, and fiber reinforced plastics for vehicles and 
structural concretes [4-5]. Researchers have developed various 
linear and nonlinear techniques to stabilize this highly 
nonlinear process [6-7, 10, 16-18-19]. The issue with these 
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researches is that none of them is implemented in PLC to 
provide real-time control of the closed-loop system. 

The magnetic ball levitation system is made of two sub-
systems: electrical and mechanical.  The current flowing 
through the inductor induces a magnetic force that balances the 
force of gravity and causes the ball to levitate in mid-air [8].  

The nonlinear model of the magnetic levitation  is developped 
based on the first principles as follows: 
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Where: 1x  is the position of the ball, 2x  the velocity of the 

ball and 3x  the current across the inductor, g is the 

gravitational force, L is  the winding inductance, m  is the 
masse of the ball, R  is the winding resistance, V  is the input 
voltage and k  is the proportional constant. 

The state-space model of the levitation system is affine 
according to the control input and can be written in the 
following way: 
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Equations (4) and (5) can be represented in a standard 
nonlinear format: 

utxgtxfx ),(),(
.

 , Vu                                      (6) 

),( txhy                                                                         (7) 

Where ),( txf , ),( txg , and ),( txh are nonlinear functions 
of state. 

 

At equilibrium, the time rate derivatives must strictly be equal 

to zero, 0
.
x . 

 

A benchmark model parameter [9] is used for investigation. 
The values of the system’s parameter are given:  

Kgm 31027.8   

181.9  KgNg  

1R  

0001.0k  

HL 01.0  

Ai 84.0  

mxe 012.01   

 

Figure 1 shows the Simulink diagram of the nonlinear system, 
and figure 2 shows its open loop response. 

 

 
Figure 1: Magnetic levitation system nonlinear state space 

model in Simulink environment 
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Figure 2: Open loop response of the nonlinear system when 
the initial position is 0.012[m] 
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The open loop response of the magnetic levitation nonlinear 
model shows that under step continuous force, the ball position 
moves toward infinity. 

This analysis confirms that the magnetic ball levitation is a 
nonlinear open loop unstable system that needs to be controlled 
effectively.  

 

3. INPUT-STATE/INPUT-OUTPUT LINEARIZATION OF 

THE CLOSED-LOOP MAGNETIC LEVITATION 

SYSTEM 

In input-output linearization, the output y  is indirectly related 
to the control u  through the state variable x  and the nonlinear 
state equations. The relationship between the output y  and the 
input u  can be created by differentiating the output function 
y  repeatedly until the input u  appears. Then it is necessary to 

design u  to cancel the non-linearity and to receive stable 
linearized closed loop system [10]. 

The nonlinear system is represented by the equations (6) and 
(7). The relationship between the input and the output is 
established at the third derivative of the output thus the relative 
degree is 3.  The procedure to find the derivatives of the output 
is: 

First derivative: 
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Where )(xhL f  and )()( tuxhLg  are Lie derivatives [20]. 

Second derivative: 
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The third differentiation shows a direct relationship between 
the input and output. The system’s relative degree is 3, because 
the output must be differentiated three times to find its 
relationship with the input.  

This case is of interest as the relative degree of the system is 
identical to the order of the system )( nr  , therefore the 

input-output linearization implementation yields input-state 
linearization [11].  

According to theory [12], the new coordinates of the system 
have the following representation: 
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Equations 8, 9 and 10 form the new vector of the transformed 
coordinate system, and it is represented as: 
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 (12) 

 

The system (12) can be linearized through proper selection of 
the control u . 

The nonlinear linearizing control law is based on defining of 
the right side (12) to be equal to Tv]00[ where v  is the 
input of the transformed linear system. 
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v  can be considered as a linear control signal used to improve 
the performance of the linearized system. 

Under input-output linearizing control (13) the nonlinear 
system is linearized and has the expression: 
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Equation (14) is in a special format called Brunovsky form. 
The last row is of special interest because it is the nonlinear 
feedback controller. 

To make the linearized system stable and follow a required 
trajectory, a linear controller must be designed. In next section, 
a linear quadratic regulator is designed to stabilize the 
Brunovsky system.  
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4. DESIGN OF THE INTEGRAL LQR CONTROLLER 

The model of the linearized system by the input-state nonlinear 
controller is selected as the Brunovsky model as it is directly 
related to the new states of the system. The task in hand is to 
design an Integral Linear Quadratic Regulator (ILQR) to 
stabilize the closed loop system. 

According to theory [13], in the ILQR design, the matrices Q  

and R  determine the relative importance of the state and the 
expenditure of the energy. They are selected according to the 
best possible response of the system obtained during various 
simulations of the closed loop system. After the selection of 
the matrices  Q  and R , both are used in the Matlab lqr 

function along with the matrices A  and B  of Brunovsky 
model to find the feedback control gain. The parameters of the 
calculated ILQR, the matrices Q  and R are the following: 
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5. SIMULATION OF THE CLOSED-LOOP SYSTEM 

The closed loop system with both nonlinear linearizing and 
linear optimal control is given in Figure 3. Figures 4 and 5 
show MATLAB/Simulink responses of the closed loop system 
under both nonlinear linearizing and linear optimal control. 

 

 
Figure 3: Feedback linearization 
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Figure 4: Nonlinear system response under linear and 

linearizing controls when the set-point is 0.75[m] 
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Figure 5: Nonlinear system response under linear and 

linearizing controls when the set-point is 0.85[m] 

 

The simulation results for the magnetic levitation system 
behaviour under nonlinear linearizing control show the 
following: 

 The system is stable. 

 There is no time delay. 

 The error signals go to zero. 

 The plant output always follows the set point 
trajectories. 

 All the states of the system are stabilized. 

 The steady state error varies for different values of the 
set-points. 

 The rising time also varies with the changes in the 
values of the set-points. For bigger set-points values 
the rising time is smaller. 
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The transition characteristics of the dynamic output behaviour 
of the closed-loop system are given below in Table 1. 

Table 1 summarizes the simulation results obtained on 
Simulink environment. 

 

Table 1: Simulink results 

Set 

point 

Characteristics Magnetic levitation 

Simulink results 

 

 

0.75m 

Time Delay 0 

Overshoot 0 

Rising Time 2s 

Steady State Error 0.002m 

Settling Time 2.2s 

 

 

0.85m 

Time Delay 0 

Overshoot 0 

Rising Time 1.8s 

Steady State Error 0.001m 

Settling Time 2s 

 

6. REAL-TIME IMPLEMENTATION OF THE 

CLOSED-LOOP SYSTEM  

Beckhoff PLC has developed a model transformation software 
that allows full transformation from Simulink to partial IEC 
61499 function blocks model.  The code generation to move 
the closed-loop system model from a Simulink program to a 
TwinCAT 3 one is as follow [14]: 

 Design and build the system model on Simulink 

 Automatic generate of C/C++ code by the Simulink 
Coder of the developed model 

 Compilation with Visual Studio C Compiler 

 Parameterize the generated code in the TwinCAT 
System Manager 

 Download and extend the developed model in the 
TwinCAT 3 runtime. 

Figure 6 shows the code generation process [15]. 

 

 
Figure 6: Code Generation process [15] 

 

The CX5020 serves as a real-time platform to execute the 
application developed in TwinCAT3. The most important 
factor to link the development Personal Computer (PC) and the 
PLC is the communication driver module. Ethernet is used as a 
mean of communication to link the personal computer used as 
development platform and the PLC via fast duplex 
communication. Ethernet module scans the PLC continuously 
for values of the input variables and writes them in an 
appropriate database in TwinCAT 3. Figure 7 shows the 
closed-loop algorithm for real-time communication. 

 

 
Figure 7: Closed-loop algorithm for real-time communication 
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The transformation software automatically translates each state 
flow block into customized basic function block with exactly: 
the same inputs, outputs and parameters as their Simulink 
counter parts as shown in figure 8.  The amount of time for 
performing model transformation depends on the complexity 
of the model in Simulink [3]. The transformation technique has 
some limitations such as:  

 Function Blocks are not event driven.  

 The Simulink solver type is set at fixed step instead of 
variable step.  

The real-time simulation has a set of priority of 5 and a 10ms 
cycle time, figures 9 and 10 show the response of the system in 
the PLC CX 5020. 

 
Figure 8: Model transformation from Simulink to TwinCAT 

PLC function blocks. 

 

 
Figure 9: Magnetic levitation real-time position when the set 

point is spy = 0.75[m] 

 

 
Figure 10: Magnetic levitation real-time position when the set 

point is spy = 0.85[m] 

 

The comparison of the dynamic output behaviors of the closed-
loop systems in Simulink with the PLC real-time results are 
given below in Table 2. 

Table 2: Simulink versus real-time results comparison 

Set 

point 

Characteristics Magnetic 

levitation 

Simulink 

results 

Magnetic 

levitation 

Real-time 

results 

 

 

0.75m 

Time Delay 0 0 

Overshoot 0 0 

Rising Time 2s 3s 

Steady State 
Error 

0.002m 0 

Settling Time 2.2s 3.6s 

 

 

0.85m 

Time Delay 0 0 

Overshoot 0 0 

Rising Time 1.8s 2.8s 

Steady State 
Error 

0.001m 0 

Settling Time 2s 3s 

 

Table 2 shows that the magnetic levitation system behaves 
within the same time delay, overshoot, rising time, steady state 
error, and settling time in both real-time and Simulink 
environments. These results prove that the model 
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transformation technique was successful to transform a closed-
loop magnetic levitation system based on input-state feedback 
linearization from Simulink to function block-based IEC 61499 
standard real-time environment. 

 

7. REAL-TIME IMPLEMENTATION AND 

SIMULATION OF A DISTRIBUTED SYSTEM OF 

TWO MAGNETIC LEVITATION SYSTEMS 

A distributed system of parallel distributed control of two 
levitation systems based on the same controllers and plants 
parameters but with different initial conditions and set-points is 
developed. The following assumptions are made: 

 Controller 1 and controller 2 are the combination of 
Integral Linear Quadratic Regulator (ILQR) and nonlinear 
input-state/input-output feedback controllers. Both have 
the same parameters. 

 MagLev 1 and MagLev 2 have different initial 
conditions. 

 The set-point 1 and the set-point 2 are different. 

The two closed-loop models of the magnetic levitation system 
controlled by feedback input-state linearization technique are 
implemented in the CX5020 PLC to achieve real-time 
distributed control. The set-points and initial conditions are 
different for both systems, and an algorithm to select the 
appropriate set-point for each system is developed. Figure 11 
shows the block diagram of the distributed control 
methodology applied. 

 
Figure 11: Block diagram of the distributed solution 

Table 3 gives the parameters of the simulation of both systems, 
and Figure 12 shows the function block algorithm developed 
for the distributed implementation. 

Table 3: Parameters of simulation for the distributed system 

Magnetic levitation 1 Magnetic levitation 2 

Set points Initial 
conditions 

Set points  Initial 
conditions 

1.1[m] [0.15 0 0.8 0]’ 1.24 [m] [0.2 0 0.86 0]’ 
1.15[m] [0.2 0 0.86 0]’ 1.45[m] [0.25 0 0.9 0]’ 
1.2[m] [0.4 0 0.96 0]’ 1.4[m] [0.45 0 0.97 

0]’ 

 

 
Figure 12: Block diagram algorithm developed on Beckhoff 

CX5020 for the distributed implementation 

 

The results of the real-time simulation of the distributed system 
are shown from Figure 13 to Figure 15. 

 

 Simulation when the set-points are: 1
1

SP
Maglevy = 1.1[m] 

and 1
2

SP
Maglevy =1.24[m]: 

 

 
 

Figure 13: Simulation of the distributed system when the set-
points are: 1

1
SP
Maglevy = 1.1[m] and 1

2
SP
Maglevy =1.24[m] 
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 Simulation when the set-points are: 2
1

SP
Maglevy = 1.15[m] 

and  2
2

SP
Maglevy =1.45[m]: 

 

 
Figure 14: Simulation of the distributed system when the set-

points are: 2
1

SP
Maglevy = 1.15[m] and 2

2
SP
Maglevy =1.45[m] 

 

 Simulation when the set-points are: 3
1

SP
Maglevy = 1.2[m] 

and 3
2

SP
Maglevy =1.4[m]: 

 

 
Figure 15: Simulation of the distributed system when the set-

points are: 3
1

SP
Maglevy = 1.2[m] and 3

2
SP
Maglevy =1.4[m] 

 

Table 4 gives the real-time trajectories specifications of the 
distributed system of the two closed-loop models of the 
magnetic levitation system. 

 

 

 

Table 4: Results of the simulation of the real-time distributed 
control 

Set 

point 

Characteristics Magnetic levitation 

Real-time results 

 
 
1.1m 

Time Delay 0 
Overshoot 0 
Rising Time 2s 
Steady State Error 0.0014m 
Settling Time 2.2s 

 
 
1.15m 

Time Delay 0 
Overshoot 0 
Rising Time 1.6s 
Steady State Error 0.0085m 
Settling Time 2s 

 
 
1.2m 

Time Delay 0 
Overshoot 0 
Rising Time 1.1s 
Steady State Error 0.0001m 
Settling Time 1.5s 

 
 
1.24m 

Time Delay 0 
Overshoot 0 
Rising Time 1.8s 
Steady State Error 0.0005m 
Settling Time 2.2s 

 

 

1.4m 

Time Delay 0 
Overshoot 0 
Rising Time 1.05s 
Steady State Error 0.0009m 
Settling Time 1.2s 

 
 
1.45m 

Time Delay 0 
Overshoot 0 
Rising Time 1.75s 
Steady State Error 0.0013m 
Settling Time 2s 

 

The simulation of the distributed implementation of the 
magnetic levitation systems shows satisfactory values of the 
trajectories specifications in Table 4. These results prove that it 
is possible to implement distributed control algorithms in PLC. 

 

8. CONCLUSION 

In this paper, exact input-state/input-output linearization and 
linear quadratic regulation of a nonlinear magnetic levitation 
system are proposed. The control algorithm and model of the 
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plant are both implemented in MATLAB/Simulink. The model 
of the closed loop system was then transformed into 
TwinCAT3 function blocks language to perform real-time 
simulation with a Beckhoff CX5020 PLC. The output signal 
tracks the reference input; therefore, this nonlinear approach 
successfully controls the magnetic levitation system. These 
results show that nonlinear control algorithms can be 
implemented into modern PLC. 

The future research is seen to be useful in the following 
directions:  

 The function blocks in TwinCAT 3 can be improved 
to be event driven.  

 A better algorithm translation tool can be developed 
to transform Matlab/Simulink code into language 
supported by the TwinCAT 3 function block 
development software.  

 Model transformation technique can be tested with 
more industrial examples to boost the acceptance of 
the IEC 61499 standard in industry.  

 Development of a hybrid system for distributed 
control and data exchange based on joint 
implementation of IEC 61499 and IEC 61850 
standards respectively.  
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