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Abstract 

 

This article is an extension of the classical theory of measures and integrals. 
The concept of fuzzy m-integral of complex valued B-functions introduced in 

[6], using Butnariu approach, is reviewed. We initiate a new outlook for 

studying various properties of the spaces L1(m) and L2(m) of complex valued 

B-functions. 
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1. Introduction 

Following the introduction of fuzzy set theory by Zadeh [1965], fuzzy measures and 

fuzzy integrals were introduced by Sugeno. The notion of an ‘additive fuzzy measure’ 
was introduced in [1] to deal with the concept of additive fuzzy integral for extended 

real valued functions [2]. In this paper, we introduce the spaces L1 (m) and L2 (m) of 

complex valued B-functions and study some of their properties. 

 
 

2. Fuzzy Preliminaries 

The following fuzzy preliminaries are taken from [1-4] which gives a brief outline of 

Butnariu fuzzy measure. 

Let X be a nonempty set, C be a –algebra of fuzzy sets in X and F be the class of all 

real valued B-functions on the Borel space (X, C ) and let R* denote R  { } and 

let R+* = [ 0, + ]. 
 

Definition 2.1 A set function m: C  R+* is called a fuzzy measure if it satisfies the 

following properties: 

1. m(Φ) = 0. (vanishing at ) 

2. If (An) n N is a sequence in C, then m (  n N An) = 1
∞ m(An) ( -additivity) 
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Then, (X, C, m) is called a measure space. 

 

Definition 2.2 A measure space is a triple M = (X, C, m) where B = (X, C ) is a Borel 

space and m is a fuzzy measure on C. 
 

Definition 2.3 Let f: X  R*
+ = (0, + ] be a function. We say that f is a Borel 

function w.r.t В or B-function iff there exists a non-negative increasing sequence of 

simple B-functions which converges to f. 
 

Definition 2.4 [4] Let f: X  R*
+ = (0, + ] be a B-function and A be an element of a 

σ-algebra C. If (sn)n N is a sequence in В + (f, A) so that sn+1 ≥ A sn for all n N and 

limn N sn (x).A(x) = f(x). A(x) (for all x X) holds, then we call it m-integral of f over 

A and denote it by ∫A f dm = lim n N ∫A sn dm. 

If ∫A f dm is finite, then f is said to be m-integrable over A. 
In this section we extend the concept of B-functions and m-integrals for complex-

valued functions also. 

 

Definition 2.5 [6] If (X,C, m) is a measure space and f be a complex-valued function 
defined on X so that f = Re f + i Im f. Then f is said to be a complex-valued Borel 

function or simply complex B-function on the Borel space (X, C ) if both Re f and Im 

f are real-valued B-functions. 

 
Definition 2.6 [6] If m is a fuzzy measure on C, f is a complex B-function on X and A 

 C. Then, f is said to be fuzzy integrable w.r.t m (m-integrable) over A iff f is a 

complex B-function and A  f  dm  +  and we define A f dm = A Re f dm + i A Im 

f dm, provided A Re f dm and A Im f dm are both finite.When A = X, we write  f dm 

instead of X f dm. 

 

Proposition 2.7 [6] f is integrable if and only if  f  is integrable. 

 

Proposition 2.8[6] Let f be a complex B-function. If f is m-integrable on A then c f is 

also m-integrable on A and A c f dm = c A f dm. 

 

Proposition 2.9 [6] If f is m-integrable on A and B  A, then f is m-integrable on B 
also. 

Follows from definition 

 

 

3. The Spaces L1(m) & L2(m) 

In this section, we introduce the spaces L1(m) & L2(m) 

 

Definition 3.1 L1(m) is defined as the collection of all complex B-functions f on X for 

which   f  dm  + . If f is a complex B-function then  f  is also a B-function and 
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hence the above integral is well defined.The members of L1(m) are called m-
integrable functions. 

 

Theorem 3.2 Suppose f and g  L1(m) and a,b  C then a f + b g  L1(m) and  (a f + 

b g) dm = a  f dm + b  g dm. 

 

Definition 3.3 Let (X, C,m) be a measure space. We define the space L2(m) or simply 

L2 as the collection of all complex B-functions f such that   f  2 dm  + . 

 

Definition 3.4 For f  L2(m) we define fuzzy norm of f as || f || = { A  f  2 dm } 1/2 

It follows that for any complex number c, || cf || =  c  || f ||, f  L2(m) 

 

Theorem 3.5 L2(m) forms a fuzzy linear space over the complex field. 

 

Theorem 3.6 If f, g L2(m) then f g  L1(m) and  f g   || f || || g ||. 

 

Theorem 3.7 If f, g  L2(m) then f + g  L2(m) and || f + g ||  || f || + || g ||. 

 

Definition 3.8 A fuzzy semi norm on a real or complex vector space L is a real valued 

function p with the following properties: 

 p(f )  0 

 p(cf ) = c p( f ), for any complex number c 

 p (f + g)  p( f ) + p( g ), f and g are arbitrary elements of L.  

 

If p is a fuzzy semi norm with the additional property that p( f ) = 0 implies f = 0, then 

p is called a fuzzy norm. 

Now ||.|| is a a semi norm on L2(m). 
If ||. || is a fuzzy semi norm on a vector space,we have the notion of distance 

d (f, g) = || f-g ||. By the definition of semi norm, we have, 

d(f,g)  0 

d(f,g) = 0 if f = g 
d(f,g) = d(f,g) 

d(f,g)  d(f,h) + d(h,g). 

 

Theorem 3.9 If f is m-integrable then   f dm     f  dm. 

 

Proof:- 

If  f dm = r e iθ, r  0, then  e-iθ f dm = r =   f dm . 

But if f( ) = ( ) e i ( ) ( taking   0) then, 

 

 e-iθ f dm =  e i( -θ) dm =   cos ( -θ) dm    dm =   f  dm. 
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Theorem 3.10 Suppose fn: X → R*, ( n  N) is a sequence of complex B-functions 

defined on X such that  n N   fn  dm  +  …(1) Then the series f(x) =  n N fn(x) 

…(2) converges to f  L1(m) and 

∫X f dm = lim n N ∫X fn dm …(3). 

 

If ||. || is a norm then d is actually a metric. 
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