On Some Results in L² (m) Space

Mathews M. George

Department of Mathematics, B.A.M College, Thuruthicad, Kerala-689 597. e-mail:mathewjas@gmail.com

Abstract

This article is an extension of the classical theory of measures and integrals. The concept of fuzzy m-integral of complex valued B-functions introduced in [6], using Butnariu approach, is reviewed. We initiate a new outlook for studying various properties of the spaces $L^1(m)$ and $L^2(m)$ of complex valued B-functions.

Keywords σ -algebra of fuzzy sets, fuzzy measure, Complex-valued B-function, integrals of a complex B-function, $L^1(m)$ space, $L^2(m)$ space

1. Introduction

Following the introduction of fuzzy set theory by Zadeh [1965], fuzzy measures and fuzzy integrals were introduced by Sugeno. The notion of an 'additive fuzzy measure' was introduced in [1] to deal with the concept of additive fuzzy integral for extended real valued functions [2]. In this paper, we introduce the spaces L^1 (m) and L^2 (m) of complex valued B-functions and study some of their properties.

2. Fuzzy Preliminaries

The following fuzzy preliminaries are taken from [1-4] which gives a brief outline of Butnariu fuzzy measure.

Let X be a nonempty set, C be a σ -algebra of fuzzy sets in X and F be the class of all real valued B-functions on the Borel space (X, C) and let \mathbf{R}^* denote $\mathbf{R} \cup \{\pm \infty\}$ and let $\mathbf{R}_+^* = [0, +\infty]$.

Definition 2.1 A set function m: $C \to R_+^*$ is called a fuzzy measure if it satisfies the following properties:

- 1. $m(\Phi) = 0$. (vanishing at Φ)
- 2. If $(A_n)_{n \in \mathbb{N}}$ is a sequence in C, then $m \in \mathbb{N}$ $A_n = \sum_{n=1}^{\infty} m(A_n) = \sum_{n=1}^{\infty} m(A_n)$

Then, (X, C, m) is called a measure space.

Definition 2.2 A measure space is a triple M = (X, C, m) where B = (X, C) is a *Borel space* and m is a *fuzzy measure* on C.

Definition 2.3 Let $f: X \to \mathbb{R}^*_+ = (0, +\infty]$ be a function. We say that f is a *Borel function* w.r.t B or B-function iff there exists a non-negative increasing sequence of simple B-functions which converges to f.

Definition 2.4 [4] Let $f: X \to \mathbb{R}^*_+ = (0, +\infty]$ be a B-function and A be an element of a σ -algebra C. If $(s_n)_{n \in \mathbb{N}}$ is a sequence in B $^+$ (f, A) so that $s_{n+1} \ge A$ s_n for all $n \in \mathbb{N}$ and $\lim_{n \in \mathbb{N}} s_n(x) . A(x) = f(x)$. A(x) (for all $x \in X$) holds, then we call it m-integral of f over A and denote it by $\int_A f \, dm = \lim_{n \in \mathbb{N}} \int_A s_n \, dm$.

If $\int_A f$ dm is finite, then f is said to be m-integrable over A.

In this section we extend the concept of B-functions and m-integrals for complex-valued functions also.

Definition 2.5 [6] If (X,C, m) is a measure space and f be a complex-valued function defined on X so that f = Re f + i Im f. Then f is said to be a complex-valued Borel function or simply complex B-function on the Borel space (X, C) if both Re f and Im f are real-valued B-functions.

Definition 2.6 [6] If m is a fuzzy measure on C, f is a complex B-function on X and A $\in C$. Then, f is said to be fuzzy integrable w.r.t m (m-integrable) over A iff f is a complex B-function and $\int_A |f| dm < +\infty$ and we define $\int_A f dm = \int_A Re f dm + i \int_A Im f dm$, provided $\int_A Re f dm$ and $\int_A Im f dm$ are both finite. When A = X, we write $\int f dm$ instead of $\int_X f dm$.

Proposition 2.7 [6] f is integrable if and only if |f| is integrable.

Proposition 2.8[6] Let f be a complex B-function. If f is m-integrable on A then c f is also m-integrable on A and $\int_A c f dm = c \int_A f dm$.

Proposition 2.9 [6] If f is m-integrable on A and B \subset A, then f is m-integrable on B also.

Follows from definition

3. The Spaces $L^1(m) \& L^2(m)$

In this section, we introduce the spaces $L^1(m) \& L^2(m)$

Definition 3.1 L¹(m) is defined as the collection of all complex B-functions f on X for which $\int |f| dm < + \infty$. If f is a complex B-function then |f| is also a B-function and

107

hence the above integral is well defined. The members of $L^1(m)$ are called mintegrable functions.

Theorem 3.2 Suppose f and $g \in L^1(m)$ and $a,b \in C$ then a f + b $g \in L^1(m)$ and $\int (a f + b g) dm = a \int f dm + b \int g dm$.

Definition 3.3 Let (X, C,m) be a measure space. We define the space $L^2(m)$ or simply L^2 as the collection of all complex B-functions f such that $\int |f|^2 dm < +\infty$.

Definition 3.4 For $f \in L^2(m)$ we define fuzzy norm of f as $||f|| = \{ \int_A |f|^2 dm \}^{1/2}$ It follows that for any complex number c, ||cf|| = |c| ||f||, $f \in L^2(m)$

Theorem 3.5 $L^2(m)$ forms a fuzzy linear space over the complex field.

Theorem 3.6 If f, $g \in L^2(m)$ then f $g \in L^1(m)$ and $|f g| \le ||f|| ||g||$.

Theorem 3.7 If f, $g \in L^2(m)$ then $f + g \in L^2(m)$ and $|| f + g || \le || f || + || g ||$.

Definition 3.8 A fuzzy semi norm on a real or complex vector space L is a real valued function p with the following properties:

- $p(f) \ge 0$
- p(cf) = c p(f), for any complex number c
- $p(f+g) \le p(f) + p(g)$, f and g are arbitrary elements of L.

If p is a fuzzy semi norm with the additional property that p(f) = 0 implies f = 0, then p is called a <u>fuzzy norm</u>.

Now $\|.\|$ is a a semi norm on $L^2(m)$.

If $\|.\|$ is a fuzzy semi norm on a vector space, we have the notion of distance $d(f, g) = \|f - g\|$. By the definition of semi norm, we have,

 $d(f,g) \ge 0$

d(f,g) = 0 if f = g

d(f,g) = d(f,g)

 $d(f,g) \le d(f,h) + d(h,g)$.

Theorem 3.9 If f is m-integrable then $|\int f dm| \le \int |f| dm$.

Proof:-

$$\begin{split} &\text{If } \int f \ dm = r \ e^{\ i\theta}, \ r \geq 0, \ then \int e^{-i\theta} \ f \ dm = r = |\int f \ dm \ |. \\ &\text{But if } f(\omega) = \rho(\omega) \ e^{\ i\phi(\omega)} \ (\ taking \ \rho \geq 0) \ then, \end{split}$$

 $\int e^{-i\theta} f \, dm = \int e^{i(\phi-\theta)} \, dm = \int \rho \, \cos \, (\phi-\theta) \, dm \leq \int \rho \, dm = \int |f| \, dm.$

Theorem 3.10 Suppose $f_n: X \to R^*$, $(n \in N)$ is a sequence of complex B-functions defined on X such that $\sum_{n \in N} \int |f_n| dm < +\infty$...(1) Then the series $f(x) = \sum_{n \in N} f_n(x)$...(2) converges to $f \in L^1(m)$ and $\int_X f dm = \lim_{n \in N} \int_X f_n dm$...(3).

If ||. || is a norm then d is actually a metric.

REFERENCES

- 1. D. Butnariu, Additive Fuzzy Measures and Integrals I, Journal of Mathematical analysis and applications 93,(1983) 436-452
- 2. D. Butnariu, Additive Fuzzy Measures and Integrals II, Journal of Mathematical analysis and applications
- 3. D. Butnariu, Additive Fuzzy Measures and Integrals III, Journal of Mathematical analysis and applications 125, (1983) 288-303
- 4. D. Butnariu, Fuzzy Measurability and Integrability, Journal of Mathematical analysis and applications 117, (1986) 385-410 (1986)
- 5. A. George and P.V Veeramani, On some results in fuzzy metric spaces. Fuzzy sets and systems 64 (1994), 395-399.
- 6. Mathews M. George, Fuzzy Integrals of Complex-valued Functions, The journal of Fuzzy Mathematics, LA, USA (accepted for publication)
- 7. Robert B. Ash and Catherine A. Doleans-Dade, Probability & Measure Theory, Second edition, Elsevier N.D, India.
- 8. W.Rudin, Real and Complex analysis, McGraw-Hill, Singapore 1987
- 9. W.Rudin, Principles of Mathematical Analysis, Third edition, International Students Edition, Singapore 1984
- 10. Z. Wang, G.J.Klir, Fuzzy Measure Theory, Plenum, New York 1992