Advances in Fuzzy Mathematics (AFM). ISSN 0974-0201 Volume 10, Number 2 (2015), pp. 109–114 © Research India Publications http://www.ripublication.com/afm.htm

SP-separation axioms in L**-topological space**¹

Wei Pan

Faculty of Science, MuDanJiang Normal University, Mudanjiang, 157000, P.R.China E-mail: mdjpanwei@163.com

Zhen-Guo Xu

National Science and Technology Infrastructure Center, Beijing 100862, P.R.China. E-mail: zhenguoxu@126.com

Ying Zhao

Department of Strategy and Development, Beijing North Vehicle Group Corporation, Beijing 100072, P.R.China E-Mail: zhaoying7723@sohu.com

Abstract

In this paper, the SP- T_{-1} , SP- T_0 , sub-SP- T_0 axioms are introduced in L-topological space. SP- T_0 implies SP- T_{-1} and sub-SP- T_0 . We give some characterizations of SP- T_{-1} , SP- T_0 , sub-SP- T_0 .

AMS Subject Classification: 54A40, 54D35.

Keywords: *L*-topological space, $SP-T_{-1}$, $SP-T_0$, sub- $SP-T_0$.

1. Introduction

There have been all kinds of studies on separation axioms in L-topology (see [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]). Some among them were based on the extension of separation axiom in general topology. The other were based on the relations between them and

¹Heilongjiang provincial department of education science and technology research project (12542284); Mudanjiang Normal university science and research project (QY2014008).

compactness, uniformity, metric, convergence, etc.. All these separation axioms have oneself characteristics.

In [1], the author introduced the concepts of strongly preopen and strongly preclosed sets, In this paper, we introduce strongly preclosed remote set and strongly preopen neighborhood set in terms of strongly preclosed L-sets and strongly preopen L-sets. We give the concepts of the SP- T_{-1} , SP- T_0 , sub-SP- T_0 axioms by means of strongly preclosed remote set and strongly preopen neighborhood set in L-topological spaces. We will prove that SP- T_0 implies SP- T_{-1} and sub-SP- T_0 .

2. Preliminaries

For a nonempty set X, L^X denotes the set of all L-fuzzy subsets (or L-subsets for short) on X. $\underline{0}$ and $\underline{1}$ respectively denote the smallest element and the largest element in L^X . It is easy to see that $M(L^X) = \{x_\alpha \mid x \in X, a \in M(L)\}$ is exactly the set of all nonzero \vee -irreducible elements in L^X . An L-topological space is a pair (X, τ) , where τ is a subfamily L^X which contains $\underline{0}$, $\underline{1}$ and is closed for any suprema and finite infima. τ is called an L-topology on X. Each member of τ is called an open L-set and its quasi-complementation is called a closed L-set.

In [1], the concepts of strongly preopen and strongly preclosed sets were introduced in [0, 1]-fuzzy set theory by Biljana Krateska. They can easily be extended to L-sets as follows:

Definition 2.1. Let (X, τ) be an L-topological space, $A \in L^X$. Then

- (1) A is called a strongly preopen L-set if and only if $A \leq int(cl_p(A))$;
- (2) A is called a strongly preclosed L-set if and only if $cl(int_p(A)) \le A$. The set of all strong preopen L-sets and the set of all strong preclosed L-sets in L^X are respectively denoted as $\mathbf{SPO}(X)$ and $\mathbf{SPC}(X)$.

Remark 2.2. Every fuzzy open (closed) set is strongly preopen (strongly preclosed) L-set, but converts is not true.

3. SP- T_{-1} , SP- T_0 and sub-SP- T_0 separation axioms

Definition 3.1. Let (L^X, τ) be an L-topological space, $P, A \in L^X$ and $x_{\lambda} \in M(L^X)$.

- (1) P is called a remote set of x_{λ} if $x_{\lambda} \not\leq P$. Remote set P of x_{λ} is called a strong preclosed remote set, if P is strong preclosed.
- (2) A is called a neighborhood set of x_{λ} if $x_{\lambda} \leq A$. Neighborhood set A of x_{λ} is called a strong preopen neighborhood set, if A is strong preopen.
- (3) The set of all strong preclosed remote set of x_{λ} will be denoted by $\eta_{sp}(x_{\lambda})$. The set of all strong preopen neighborhood set of x_{λ} will be denoted by $\xi_{sp}(x_{\lambda})$.

Definition 3.2. Let (X, τ) be an L-topological space and $x_{\lambda}, x_{\mu} \in M(L^X)$.

- (1) If for any two molecules x_{λ} , x_{μ} and $x_{\lambda} \leq x_{\mu}$, there exists $P \in \eta_{sp}(x_{\mu})$ such that $x_{\lambda} \leq P$, then (X, τ) is called SP- T_{-1} ;
- (2) If for any two molecules x_{λ} , x_{μ} and $x_{\lambda} \neq x_{\mu}$, there exists $P \in \eta_{sp}(x_{\mu})$ such that $x_{\lambda} \leq P$, or there exists $R \in \eta_{sp}(x_{\lambda})$ such that $x_{\mu} \leq R$, then (X, τ) is called SP- T_0 ;
- (3) If for ant two crisp points $x, y \in X$, there exists $\lambda \in M(L)$ such that $P \in \eta_{sp}(x_{\lambda})$ and $y_{\lambda} \leq P$ or there exists $Q \in \eta_{sp}(y_{\lambda})$ and $x_{\lambda} \leq Q$, then (L^{X}, τ) is called sub-SP- T_{0} .

Obviously we have the following proposition.

Proposition 3.3. SP- T_0 implies SP- T_{-1} and sub-SP- T_0 .

Remark 3.4. T_i implies SP- T_i (i = -1, 0), but inverses are not true, sub- T_0 implies sub-SP- T_0 , but inverse is not true, We only give an example that explain an L-space is SP- T_1 , but it is not T_1 -space:

Example 3.5. Let $X = \{x_1, x_2\}$, $L = \{0, a, b, c, d, 1\}$, where $a' = a, b' = b, c' = d, d' = c, 1' = 0, 0' = 1; 0 < d < a < c < 1, 0 < d < b < c < 1, a and b are incomparable. <math>\forall \lambda, \mu \in L$ we define fuzzy set $C(\lambda, \mu) : X \to L$ such that

$$C(\lambda, \mu)(x) = \begin{cases} \lambda, & \text{if } x = x_1, \\ \mu, & \text{if } x = x_2. \end{cases}$$

Let (X, τ) be an L-topological space, where

$$\tau = \{C(0,0), C(a,c), C(b,d), C(d,d), C(c,c), C(1,1)\}\$$

and Let Φ be the set of all strongly preclosed L-sets, then

$$\Phi = \{C(0,0), C(a,d), C(b,c), C(c,c), C(d,a), C(d,b), C(d,c), C(d,d), C(1,1)\}.$$

We also know that

$$M(L^X) = \{C(0, a), C(0, b), C(0, c), C(0, d), C(0, 1), C(a, 0), C(b, 0), C(c, 0), C(d, 0), (1, 0)\}.$$

So that we take any $x_{\lambda}, x_{\mu} \in M(L^X), \mu < \lambda$, there exists $P \in \eta_{sp}(x_{\lambda})$ such that $x_{\mu} \leq P$. Hence (X, τ) is a SP- T_{-1} space, but we can prove that (X, τ) is not T_{-1} , in fact, we take molecules C(0, a), C(0, c), strongly preclosed remote set of C(0, c) are only C(a, d), C(d, d), but $C(0, a) \nleq C(a, d), C(0, a) \nleq C(d, d)$. This implies that (X, τ) is not T_{-1} .

Theorem 3.6. Let (X, τ) be an L-topological space, Then it is SP- T_{-1} if and only if for any $x_{\lambda} \in M(L^X)$, x_{λ} is a component of $cl_{SP}(x_{\lambda})$.

Proof. Let $x_{\lambda} \in M(L^X)$, x_{λ} is not a component of $cl_{sp}(x_{\lambda})$, then there exists a $x_{\mu} \in M(L^X)$ such that $x_{\lambda} < x_{\mu} \le cl_{sp}(x_{\lambda})$. Let $P \in \eta_{sp}(x_{\mu})$, then $x_{\lambda} \not\le P$, because if $x_{\lambda} \le P$, then $cl_{sp}(x_{\lambda}) \le P$, so $x_{\mu} \le P$, a contradiction! Hence (X, τ) is not SP- T_{-1} .

Conversely, Suppose that (X, τ) is not SP- T_{-1} , then there exist $\lambda, \mu \in M(L)$ and $x \in X, \lambda < \mu$, for any $P \in \eta_{sp}(x_{\mu}), x_{\lambda} \leq P$. By $x_{\lambda} \leq cl_{sp}(x_{\lambda})$ we have $x_{\mu} \leq cl_{sp}(x_{\lambda})$, because if $x_{\mu} \not\leq cl_{sp}(x_{\lambda})$, then $cl_{sp}(x_{\lambda}) \in \eta_{sp}(x_{\mu})$, so $x_{\lambda} \not\leq cl_{sp}(x_{\lambda})$, a contradiction. Hence x_{λ} is not a component of $cl_{sp}(x_{\lambda})$.

Theorem 3.7. Let (X, τ) be an L-topological space, where L = [0, 1]. Then (X, τ) is SP- T_{-1} if and only if for each fuzzy point x_{λ} , x_{λ} is a component of a certain strongly preopen L-set.

Proof. Let (X, τ) be SP- T_{-1} and $x_{\lambda} \in M(L^X)$. If $\lambda = 1$, then x_{λ} is a component of the strongly preopen L-set $\underline{1}$. If $\lambda \neq 1$, then $x_{1-\lambda}$ is a component of $cl_{sp}(x_{1-\lambda})$ by Theorem 3.6. Hence $x_{\lambda} = x_{1-(1-\lambda)}$ is a component of strongly preopen L-set $(cl_{sp}(x_{1-\lambda}))'$.

Conversely, suppose that (X, τ) is not SP- T_{-1} , then there exists $x_{\lambda} \in M(L^X)$ such that x_{λ} is not a component of $cl_{sp}(x_{\lambda})$. Since $cl_{sp}(x_{\lambda})$ is intersection of all strongly preclosed L-sets containing x_{λ} , it is impossible for x_{λ} to be a component of any strongly preclosed L-set. In fact, if x_{λ} is a component of certain strongly preclosed L-set A, then $x_{\lambda} \leq A$, so that $A \in \{B \mid B \geq x_{\lambda}, B \text{ is strongly preclosed}\}$, hence $A \geq \bigwedge \{B \mid B \geq x_{\lambda}, B \text{ is strongly preclosed}\}$, i.e., $A \geq cl_{sp}(x_{\lambda}) \geq x_{\lambda}$, this contradicts that x_{λ} is a component of A. Thus x_{λ} is not a component of any strongly preclosed L-set. This implies $\lambda \neq 1$. Hence there exists a $x_{1-\lambda}$, it is not a component of any strongly preopen L-set. A contradiction.

Theorem 3.8. Let (X, τ) be an L-topological space, where L = [0, 1]. Then it is SP- T_{-1} if and only if for fuzzy point $x_{\lambda}, x_{\lambda} \leq \bigvee \eta_{sp}(x_{\lambda})$.

Proof. Suppose that for any $x_{\lambda} \in M(L^X)$, $x_{\lambda} \leq \bigvee \eta_{sp}(x_{\lambda})$ and $\mu \in [0, 1]$, $\mu < \lambda$. Put

$$\eta_{sp_1}(x_{\lambda}) = \{P : P \land a \neq 0, P \in \eta_{sp}(x_{\lambda})\}\$$

and $x_{\lambda}^{P} = x_{\lambda} \wedge P$, where $P \in \eta_{sp_{1}}(x_{\lambda})$. Then $x_{\lambda} \leq \bigvee \eta_{sp_{1}}(x_{\lambda}), x_{\lambda}^{P} \in M(L^{X})$ and

$$x_{\lambda} = x_{\lambda} \wedge (\bigvee \eta_{sp_1}(x_{\lambda})) = \bigvee \{x_{\lambda}^P : P \in \eta_{sp_1}(x_{\lambda})\}$$

Since $x_{\lambda}^{P} \leq a$ and $\mu \leq \lambda$, $x_{\lambda}^{P} \wedge P \neq \underline{0}$. If for any $x_{\lambda}^{P} \in M(L^{X})$, $x_{\lambda}^{P} < x_{\mu}$, then $x_{\lambda} \leq x_{\mu}$. This is a contradiction. Hence there exists $\eta_{sp_{1}}(x_{\lambda})$ such that $x_{\mu} \leq x_{\lambda}^{P}$ and $x_{\mu} \leq P$, so that (X, τ) is SP- T_{1} .

Conversely, suppose that (X, τ) is SP- $T_{-1}, x_{\lambda} \in M(L^X)$. Put $M_1 = \{x_{\mu} : \mu < \lambda\}$, then $x_{\lambda} = \bigvee M_1$. Since (X, τ) is SP- T_{-1} , for any $x_{\mu} \in M_1$, there exists a $P_{\mu} \in \eta_{sp}(x_{\lambda})$ such that $x_{\mu} \leq P_{\mu}$. Hence $x_{\lambda} \leq \bigvee \{P_{\mu} : x_{\mu} \in M_1\}$ and so $x_{\lambda} \leq \bigvee \eta_{sp}(x_{\lambda})$.

Theorem 3.9. Let (X, τ) be an L-topological space. Then

- (1) (X, τ) is SP- T_0 if and only if for any two distinct molecules x_{λ} , y_{μ} , we have $\eta_{sp}(x_{\lambda}) \neq \eta_{sp}(y_{\mu})$;
- (2) (X, τ) is SP- T_0 if and only if for any two distinct molecules x_{λ} , y_{μ} , we have $x_{\lambda} \nleq cl_{sp}(y_{\mu})$ or $y_{\mu} \nleq cl_{sp}(x_{\lambda})$.
- *Proof.* (1) Suppose that (X, τ) is not SP- T_0 , then there exist x_λ , $y_\mu \in M(L^X)$, $x_\lambda \neq y_\mu$ such that for any $P \in \eta_{sp}(x_\lambda)$, $y_\mu \not\leq P$, so $P \in \eta_{sp}(y_\mu)$, on the other hand for any $Q \in \eta_{sp}(y_\mu)$, $x_\lambda \not\leq Q$, so $Q \in \eta_{sp}(x_\lambda)$, i.e., $\eta_{sp}(x_\lambda) = \eta_{sp}(y_\mu)$. Conversely, Suppose that (X, τ) is SP- T_0 , then for any $x_\lambda \neq y_\mu$ in $M(L^X)$, there exists $P \in \eta_{sp}(x_\lambda)$ such that $y_\mu \leq P$, so $P \notin \eta_{sp}(y_\mu)$ or $Q \in \eta_{sp}(y_\mu)$ such that $x_\lambda \leq Q$, so $Q \notin \eta_{sp}(x_\lambda)$. Hence $\eta_{sp}(x_\lambda) \neq \eta_{sp}(y_\mu)$.
- (2) Suppose that (X, τ) is not SP- T_0 , then by (1), we know that there exist x_λ , $y_\mu \in M(L^X)$, $x_\lambda \neq y_\mu$ such that $\eta_{sp}(x_\lambda) = \eta_{sp}(y_\mu)$, hence $x_\lambda \leq cl_{sp}(y_\mu)$ and $y_\mu \leq cl_{sp}(x_\lambda)$, because if $x_\lambda \nleq cl_{sp}(y_\mu)$ or $y_\mu \nleq cl_{sp}(x_\lambda)$, then $cl_{sp}(y_\mu) \in \eta_{sp}(x_\lambda) = \eta_{sp}(y_\mu)$, or $cl_{sp}(x_\lambda) \in \eta_{sp}(y_\mu) = \eta_{sp}(x_\lambda)$, those are contradictions.

Conversely, suppose that (X, τ) is SP- T_0 . Then for any $x_{\lambda} \neq y_{\mu}$ in $M(L^X)$, there exists $P \in \eta_{sp}(x_{\lambda})$ such that $y_{\mu} \leq P$, so $cl_{sp}(y_{\mu}) \leq P$. Hence $x_{\lambda} \nleq cl_{sp}(y_{\mu})$.

Similarly we can prove following theorem.

Theorem 3.10. Let (X, τ) be an L-topological space. Then

- (1) (X, τ) is sub-SP- T_0 if and only if for any two distinct crisp points $x, y \in X$, there exists such that $\eta_{SP}(x_{\lambda}) \neq \eta_{SP}(y_{\lambda})$;
- (2) (X, τ) is sub-SP- T_0 if and only if for any two distinct crisp points x, y, there exists $\lambda \in M(L)$ such that $x_{\lambda} \not\leq cl_{sp}(y_{\lambda})$ or $y_{\lambda} \not\leq cl_{sp}(x_{\lambda})$.

The following Theorem is obvious:

Theorem 3.11. SP- T_{-1} , SP- T_0 and sub-SP- T_0 separability are hereditary.

Theorem 3.12. Let $f:(X,\tau)\to (Y,\mu)$ be a bijection and a SP-irresolute closed mapping. If (X,τ) is SP- $T_i(i=-1,0)$, then (Y,μ) is SP- $T_i(i=-1,0)$ too.

Proof. We only prove i = 0.

Let (X, τ) be a SP- T_0 , for any $x_{\lambda} \neq y_{\mu} \in M(L^Y)$, then $f_L^{\leftarrow}(x_{\lambda})$, $f_L^{\leftarrow}(y_{\mu}) \in M(L^X)$ and $f_L^{\leftarrow}(x_{\lambda}) \neq f_L^{\leftarrow}(y_{\mu})$. Since (X, τ) is a SP- T_0 , there exists a $P \in \eta_{sp}(f_L^{\leftarrow}(x_{\lambda}))$

such that $f_L^{\leftarrow}(y_{\mu}) \leq P$ or there exists a $Q \in \eta_{sp}(f_L^{\leftarrow}(y_{\mu}))$ such that $f_L^{\leftarrow}(x_{\lambda}) \leq Q$. So that $x_{\lambda} \not\leq f_L^{\rightarrow}(P)$ and $y_{\mu} \leq f_L^{\rightarrow}(P)$ or $y_{\mu} \not\leq f_L^{\rightarrow}(P)$ and $x_{\lambda} \leq f_L^{\rightarrow}(P)$. This implies that there exists a $f_L^{\rightarrow}(P) \in \eta_{sp}^{-}(x_{\lambda})$ such that $y_{\mu} \leq f_L^{\rightarrow}(P)$ or there exists a $f_L^{\rightarrow}(Q) \in \eta_{sp}^{-}(y_{\mu})$ such that $x_{\lambda} \leq f_L^{\rightarrow}(Q)$ from f_L^{\rightarrow} is SP-irresolute closed mapping.

References

- [1] Biljana Krateska, Fuzzy strongly preopen sets and fuzzy strong precontinuity, *Mathematics Vesnik*, 50(1998), 111–123.
- [2] Biljana Krateska, Some fuzzy SP-topological properties, *Mathematics Vesnik*, 51(1999), 39–51.
- [3] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182–190.
- [4] Shui-Li Chen and Zheng-Xing Wu, Urysohn separation property in topological molecular lattice, *Fuzzy Sets and Systems*, 123(2001), 177–184.
- [5] Jin-Ming Fang, $H(\lambda)$ -completely Hausdorff axiom on L-topological spaces, Fuzzy Sets and Systems, 140(2003), 457–569.
- [6] M.H. Ghanim, O.A. Tantawy and F.M. Selim, On lower separation axioms, *Fuzzy Sets and Systems*, 85(1997) 385–389.
- [7] B. Hutton, Normality in fuzzy topological spaces, *J. Math. Anal. Appl.*, 50(1975) 74–79.
- [8] T. Kubiak On L-Tychonoff spaces, Fuzzy Sets and Systems, 73(1995) 25–53.
- [9] Sheng-Gang Li, Separation axioms in *L*-fuzzy topological spaces (I): T_0 and T_1 , *Fuzzy Sets and Systems*, 116(2000), 377–383.
- [10] S.E. Rodabaugh, Applications of local separation axioms, compactness axioms representations and compactifications to poslat topological spaces, *Fuzzy Sets and Systems*, 73(1995), 55–87.
- [11] Fu-Gui Shi and Li-Jun Zhao, Pointwise characterizations of H-R regularity, *J. Harbin Sci. Thehnol. Univ.*, 1(1995), 84–85 (in Chinese).
- [12] Fu-Gui Shi, Fuzzy pointwise complete regularity and imbedding theorem, *J. Fuzzy Meth.*, 2(1999), 305–310.
- [13] Fu-Gui Shi, L-fuzzy pointwise metric spaces and T_2 axiom, J. of Capital Normal University, 1(2000), 8–12 (in Chinese).
- [14] Guo-Jun Wang, Theory of *L*-fuzzy topological spaces, Shaanxi Normal University Press, Xian, 1988 (in Chinese).