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ABSTRACT 

 
Fuzzy coloring is an assignment of colors to nodes in which no two strong 

adjacent nodes have same color. In this paper, properties of fuzzy coloring are 

discussed. On which fuzzy graphs, fuzzy chromatic number ( f (G)) equals 

chromatic number ( (G*)) of its corresponding underlying crisp graph are 
studied. The necessary and sufficient condition of a fuzzy graph on complete 

graph of 4 nodes to be regular can be found. The sufficient conditions of a 

fuzzy graph on complete graph of odd nodes and of even nodes to be regular 
are found. The fuzzy chromatic number of regular fuzzy graph on complete 

graph with same and distinct membership values is also found. 

 

Key words: fuzzy coloring, fuzzy chromatic number, regular fuzzy graph, 
complete graph, Hamiltonian cycle and strong arc. 

 

 

1 Introduction: 
Fuzzy graph theory has numerous applications in real life situations. In particular, 

fuzzy coloring is one of the most important concepts in fuzzy graph theory. It is 

applicable in almost all applications like Traffic light control, Exam scheduling, 

Register allocation, tournament problem, banquet problem etc... In almost all 
problems, our aim is to find fuzzy chromatic number of the corresponding fuzzy 

graph model. The concept of fuzzy coloring was introduced by Eslahchi and Onagh 

[2]. The definition of fuzzy chromatic number defined by Eslahchi and Onagh [2] was 

modified by JahirHussain and KanzulFathima [4]. NagoorGani and Radha published a 
paper on Regular fuzzy graph which contains some properties of regular fuzzy graph 

on cycles, characterization of regular fuzzy graphs on a cycle etc. In this paper, some 

properties of fuzzy coloringare discussed. Wecharacterize the fuzzy graph on 

which f(G) = (G*) and fuzzy coloring of regular fuzzy graph on complete graph is 

also studied. 
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2 Preliminaries 

Definition 2.1: A fuzzy graph G is a pair of functions G=(σ,μ) where σ: V  [0,1], 

where V is a node(vertex) set and μ :V V  [0,1], a symmetric fuzzy relation on σ. 

The underlying crisp graph of G= (σ,μ) is G= (V,E) and is denoted as G*, where E ⊆ 

V×V. 

 

Definition 2.2: Strength of a path in fuzzy graph G is the weight of the weakest arc in 

that path.A weakest arc is an arc of minimum weight in G. 

 
Definition 2.3: A strongest path between two nodes u,v is a pathcorresponding to 

maximum strength between u and v. 

The strength of the strongest path is denoted by ∞ (u,v). 

 

Definition 2.4: An arc (x,y) is said to be a strong arc if ∞(x,y) = (x,y).Otherwise it 

is weak arc 

 
Definition 2.5:The degree of a node u is the sum of membership values of arcs 

incident on it. It is denoted by d (u). 

 

Definition 2.6: A fuzzy graph G is said to be regular if d (v) = k, for all v V and k is 
a constant. 

 

Definition 2.7: A cycle in a fuzzy graph is said to be fuzzy cycle if it contains more 
than one weakest arc. 

 

Definition 2.8: A fuzzy graph G is said to be strong if (x,y)= (x) (y), (x,y) E. 

 

Definition 2.9: A fuzzy graph G is said to be complete if (x,y)= (x) 

(y), x,y V.  

 

 

3Properties of fuzzy coloring 

 

Definition 3.1: If (x,y) is strong arc then x and y are strong adjacent. 

 

Note: A weakest arc is different from weak arc. A weakest arc need not be weak arc 

and a weak arc may be weakest arc. 

 
Definition 3.2: Fuzzy coloring is an assignment of colors to nodes of a fuzzy graph G 

such that strong adjacent nodes have different colors. 

 
Definition 3.3: Fuzzy chromatic number of a fuzzy graph G is a minimum number of 

colors needed for fuzzy coloring of G. It is denoted by f (G). 

Since in any fuzzy graph model our aim is to find fuzzy chromatic number of that 
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model, here fuzzy coloring means proper fuzzy coloring with minimum number of 
colors. 

In crisp graph theory, nodes of an arc must have different color in proper coloring. 

But in fuzzy graph, arcs are classified as strong arc and weak arc and nodes of strong 
arc always have different color whereas nodes of weak arc have the same color in 

every fuzzy coloring. Other than these two arcs, in this section coloring the nodes of a 

weakest arc and fuzzy bridge are discussed. 

 
Property 3.4: Nodes of a weakest arc may or may not have same color in every fuzzy 

coloring. 

 

Proof:Let G be a fuzzy graph and (x,y) be a weakest arc of G. Then the strength of 

connectedness between x and y can be at least (x,y) i.e.,  (x,y) (x,y). If (x,y) = 

(x,y) then (x,y) is strong arc which implies x and y cannot have same color in a 

fuzzycoloring. If (x,y) < (x,y), then (x,y) is not strong arc and so x and y can have 
same color. 

 

Property 3.5: Nodes of a weakest arc will have same color if it is unique and lies on a 

cycle. 

 

Proof:Let G be a fuzzy graph such that it has unique weakest arc (x, y). Assume that 

(x,y) lies on a cycle. Then strength of connectedness between x and y is greater than 

(x,y) since (x,y) lies on a cycle and it is unique. Therefore (x,y) (x,y). Hence x 
and y must have same color in fuzzy coloring. 

 

Note: In general, a weakest arc need not be weak arc. But it is weak arc if it is unique 
and lies on a cycle. 

 

Property 3.6: In a fuzzy graph G, nodes of a fuzzy bridge need not have same color 

inproper fuzzycoloring. 

 

Proof:This property follows from that “fuzzy bridges need not to be a strong arc”.  

 

 

4 Fuzzy Graphs with f (G) =  (G*) 

 

Theorem 4.1: If G is a strong fuzzy graph then f (G) = (G*). 

 

Proof:Let G be a strong fuzzy graph. Then all arcs of G are strong arc. Now construct 

a graphG1 = (V, E1) such that an arc (x,y) is strong arc in G iff it is an arc in G1. 

Clearly G1 is a crisp graph. Since all arcs of G are strong and there is no weak arc, 

every arc of G is also an arc of G1 and so f (G) = (G1). Clearly G is same as G*. 

Hence f (G) = (G1)= (G*). 

 

Corollary4.2: If G is a complete fuzzy graph then f (G) = (G*). 
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Proof:Let G be a complete fuzzy graph. Since every complete fuzzy graph is strong, 

by theorem 4.1 f (G) = (G*). 

 

Theorem 4.3: If G is a fuzzy cycle then f (G) = (G*). 

 

ProofLet G be a fuzzy cycle of length n. Then either n is odd or even. 

 

Case i: Assume that n is odd. We know that fuzzy chromatic number of fuzzy cycle 

of odd length is 3. The underlying crisp graph G* is the crisp cycle of odd length 

whose chromatic number is 3. Thus f (G) = (G*). 

 

Case ii: If n is even then fuzzy chromatic number of G is 2. Since G* is the cycle of 

even length, we have f (G) = (G*). 
 

Corollary 4.4: Let G be a regular fuzzy graph such that G* is a cycle. Then f (G) 

= (G*). 

 

Proof:If G is a regular fuzzy graph where G*is a cycle then G is a fuzzy cycle. 

Therefore by theorem 4.3, f (G) = (G*). 

 
Theorem 4.5: Let G be a fuzzy graph such that every node is strong adjacent to all 

other nodes. Then f (G) =n. In this case f (G) = (G*). 

 
Proof:Let G be a fuzzy graph such that every node is strong adjacent to all other 

nodes. Clearly this is a fuzzy graph in which all arcs are strong. In this type of fuzzy 

of, each node will receive a unique color. Since there are n nodes in G, f (G) =n. 

Clearly the underlying crisp graph of this fuzzy graph is a complete graph. So f (G) 

= (G*). 
 

 

5 Fuzzy coloring of regular fuzzy graph on complete graph 

 

Every complete graph Kn is the union of cycle of length n and its complementi.e. Kn = 

Cn . 

 
Theorem 5.1: Let G be a fuzzy graph such that G* is complete graph on 4 nodes (K4 

= C4 ). Then G is regular fuzzy graph iff alternate arcs of C4 have same 

membership values and arcs of have same membership values. 

 

Proof:Assume that G is a fuzzy graph on complete graph with 4 nodes v1,v2, v3 and 

v4. Lete1= (v1, v2),e2 = (v2, v3), e3= (v3, v4)and e4 = (v4, v1) are arcs of C4 ande5= (v1, 

v3),e6= (v2, v4) are arcs of . Clearly each node has degree 3 in G* i.e. 3 arcs are 
incident on each node. By our assumption, e1,e4 and e5 are incident on v1, e1,e2 and e6 
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are incident on v2, e2,e3 ande5 are incident on v3 ande3,e4, e6 are incident on v4. Now G 
is regular iff the following equations hold 

(e1) + (e4) + (e5) = a 

(e1) + (e2) + (e6) = a 

(e2) + (e3) + (e5) = a 

(e3) + (e4) + (e6) = a 

 

Solving these equations, we get (e1) = (e3), (e2) = (e4) and (e5) = (e6). Thus G 

is regular iff (e1) = (e3), (e2) = (e4) and (e5) = (e6). 

 
Corollary 5.2: In the above theorem, if the three membership values are in strictly 

increasing (strictly decreasing) sequence then f (G) = 2. 

 

Proof:Let (e1) = (e3) = a, (e2) = (e4) = b and (e5) = (e6) =c and assume that 

a<b<c. then  (ei) =c, if i=5, 6 and  (ei) =b if i=1, 2, 3, 4. Thus arcs e2, e4, e5, e6 are 

strong arcs and e1, e3 are weak arcs. Now assign color 1 to v1, v2 and color 2 to v3, v4. 

Clearly this is fuzzy coloring of minimum cardinality. Hence f (G) = 2. Similarly we 

can prove this result for strictly decreasing sequence. 

 

Corollary 5.3: Let G be a fuzzy graph given in the theorem 5.1. If all arcs of G have 

same membership values, then f (G) = 4. In this case, f (G) = (G*). 

 

Proof:If all membership values of arcs are same, then G should be strong fuzzy 

graph. By theorem 4.1, each node will receive unique color. Hence f (G) =4. 
 

Theorem 5.4: The complete graph K2n+1, n 1 have n edge-disjoint Hamiltonian 

cycles. 

 

Proof:Let G be a complete graph on odd nodes. Name the nodes of G as v, 0, 1, 

2…2n-1. Then G contains the following edge-disjoint Hamiltonian cycles. 

C1: v, 0, 2n-1, 1, 2n-2, 2, 2n-3…n-1, n, v. 
C2: v, 1, 0, 2, 2n-1, 3, 2n-2…n, n+1, v. 

C3: v, 2, 1, 3, 0, 4, 2n-1…n+1, n+2, v. 

. 

. 

. 

Cn: v, n-1, n-2, n, n-3, n+1, n-4…2n-2, 2n-1, v. 

 

For example name the nodes of K9 as v, 0, 1, 2, 3, 4, 5, 6, and 7. Then K9 is 
decomposable into following four cycles 

C1: v 0 7 1 6 2 5 3 4 v 

C2: v 1 0 2 7 3 6 4 5 v 

C3: v 2 1 3 0 4 7 5 6 v 
C4: v 3 2 4 1 5 0 6 7 v 



154 JahirHussain R and Kanzul Fatima K S 

 

 
Theorem 5.5: Let G be a fuzzy graph such that G* is a complete graph on odd nodes 

(K2n+1). Then G is regular fuzzy graph if arcs of every Hamiltonian cycles in G* have 

same membership values in G. 

 

Proof:Let G be a fuzzy graph such that G* is K2n+1. Now we make some observations 

about G*. By theorem 5.4, for any n 1 K2n+1has an n Hamiltonian edge-disjoint cycle. 

They are given below 
C1: v, 0, 2n-1, 1, 2n-2, 2, 2n-3…n-1, n, v. 

C2: v, 1, 0, 2, 2n-1, 3, 2n-2…n, n+1, v. 

C3: v, 2, 1, 3, 0, 4, 2n-1…n+1, n+2, v. 

. 

. 

. 

Cn: v, n-1, n-2, n, n-3, n+1, n-4…2n-2, 2n-1, v. 

 
From these cycles, every node is adjacent to exactly two nodes of every cycle. That is 

if v V, then di
*(v) =2, i=1, 2…n. (di

*(v) denotes the degree of v in ith cycle of G*-) so 

thatd*(v) = d1
*(v) +d2

*(v) +d3
*(v) +… +dn

*(v) = 2n, for all v V. 
In fuzzy graph G, assume that the arcs of n Hamiltonian edge-disjoint cycles have 

same membership values. 

Let a1, a2…an be the membership values of C1, C2…Cn respectively. We know that 

every node of G is adjacent to 2n nodes and exactly two arcs of every Hamiltonian 
cycle are incident with each node. Since there are n Hamiltonian edge-disjoint cycles, 

the degree of v in G is d (v) = 2a1+ 2a2+…+2an = 2a, where a= a1+ a2+…+an. 

similarly d (0) =d (1) = … =d (2n-1) = 2a. Thus degree of every node is 2a, for some 

a. Hence G is regular. 
 

Corollary 5.6: In the above theorem, if the values of a1, a2… anare same then f (G) = 

2n+1. In this case f (G) =  (G*). 

 

Proof:Let us assume that a1= a2= …=an= a. then  (x,y) =  (x,y), for all (x,y)  E 

since strength of connectedness between any pair of nodes must be a. Thus all arcs of 
G are strong. Since G* is complete, every node is adjacent to every other node in G*. 

Also we have every node is strong adjacent to every other node in G. Each node will 

have a unique color and hence f (G) = 2n+1. 

 
Corollary 5.7: In the above theorem, if the values of a1,a2… anare strictly increasing 

(or strictly decreasing) sequence then f (G) = 3. In this case, f (G) = f (C), where C 

is the fuzzy cycle of odd length. 

 

Proof:Since G* is complete, G has n (2n+1) arcs. So every Hamiltonian cycle has 

2n+1 arc. Without loss of generality, let us take a1=.1, a2=.2 … an=.n. then 
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For any arc (x,y) in C1, it has at least one path in Cn.Therefore strength of 

connectedness between x and y is.n which implies (x,y)<  (x,y), for all (x,y) C1. 

Since any arc (x,y) in C2 has at least one x-y path in Cn, (x,y)<  (x,y). Similarly for 

any arc (x,y) in Cn-1 (x,y)<  (x,y). 
Thus for any arc (x,y)in C1, C2,… Cn-1, (x,y)  (x,y) which implies all arcs of C1, 

C2,… Cn-1 is not strong arc. But every arc in Cn satisfies (x,y) =  (x,y). Therefore 
every arc of Cn is strong. 

Since every arc of G except arcs of Cn are not strong, f (G) is equal to f (C) where C 

is a fuzzy cycle on (2n+1) nodes (here we denote it as Cn). We know that fuzzy 

chromatic number of odd fuzzy cycle is 3. Therefore f (G) = 3. 

Similarly we can prove the theorem for strictly decreasing sequence of a1, a2 … an. 

 

Note: Theorem 5.4 is not true for a fuzzy graph G such that G* is K2n. But it is regular 
in the following case. 

 

Theorem 5.8: Let G be a fuzzy graph such that G* is K2n ( ) then G is 

regular if  (x,y) = a,  (x,y) C2n and  (x,y) = b,  (x,y) , where a, b (0,1]. 

 
Proof:Let G be a fuzzy graph such that G* K2n which is the union of C2n (cycle of 

length 2n, n 2) and its complement. 

Now suppose that  (x,y) = a, if (x,y) C2n and  (x,y) =b, if (x,y) . 

Since K2n =  exactly two arcs of C2n and 2n-3 arcs of  are incident to 
each node of G so that degree of every node in G* becomes 2n-1. So d1

* (vi) =2 

(degree of every node in C2n), for all i and d2
*(vi) =2n-3 (degree of every node in ), 

for all i. 

Therefore d (v) = 2a+ (2n-3) b 

= 2a+kb, where k =2n-3 

= k1, where k1 = 2a+kb, for all v V. 

Thus G is regular. 

 

Note: The converse of the above theorem is not true. 

 

Corollary 5.9: In the above theorem, if a=b then f (G) = 2n. In this case f (G) = 

(G*). 
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Proof:Let a=b. then  (x,y) =  (x,y), for all (x,y) in G. so all arcs of G are strong. 
Since every node is strong adjacent to every other node, each node will receive a 

unique color. Hence f (G) = 2n 

 

Corollary5.10: In the above theorem, if a<b then f (G) = n. in this case f (G) = 

( ). 

 

Proof:Assume that a<b. For any arc (x,y) in C2n,  has at least one x-y path. 

Therefore (x,y) =b and (x,y) =a<b = (x,y) i.e. (x,y) <  (x,y) if (x,y) C2n. so 

all arcs of C2n are not strong. Similarly for any arc (x,y) in , (x,y) = b=  (x,y) 

and so all arcs of  are strong. Thus f (G) equals ( ) (since every arcs of C2n 
are not strong, without loss of generality we omit these arcs when we find fuzzy 

chromatic number of G). 

Now we have to determine chromatic number of . In , each node is adjacent to 
every other node except two nodes (two neighbouring nodes). Let v1, v2 …v2n be the 

nodes of . Then every node of  is not adjacent to exactly two nodes i.e. vi(i=1, 
2…2n, v0means v2n and v2n+1means v1) is not adjacent tovi-1 and vi+1. We can give 

same color to vi, vi-1 and vi+1, i=1, 2…2n. But vi-1 is adjacent to vi+1. So we choose any 
one from vi-1 and vi+1. Choose vi+1. Now assigncolorc1to v1 and v2, c2 to v3and v4 … cn 

to v2n-1, v2n. Hence ( ) =n. Thus f (G) = n. 
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