
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11707-11714

© Research India Publications. http://www.ripublication.com

11707

An Approach to Semantic Search using Domain Ontology and GraphDB.

Vinayak Prasad Ramavath
Department of Electronics and Communication Engineering, NIT Warangal, India.

Anjali Sudhir Moharir

Department of Electronics and Communication Engineering, NIT Warangal, India.

Abstract

Various search engines are used in every field throughout the

world every day. They are the fastest way to gather data in a

short time. It is clear that the quicker and more efficient the

results, the more helpful it is to the end users. This in turn,

increases the capacity to push forward science and

technology, architecture, medicine, and many other fields.

One efficient way of retrieving optimal data from a search is

by using the semantic search technique. Semantic search is a

methodology used to query data, with emphasis on the intent

behind the query, instead of only the words contained within

it. While this approach is being adopted and implemented by

some organizations, the architectures for indexing and

querying documents and data differ greatly. Some major

difficulties are that the search experience is dependent on a

number of elements. These include a query language

processor strong enough to handle billions of different

queries, a user-friendly interface, result ranking. It also

requires the use of appropriate data structures (graph,

document-based) to store data. Semantic search is preferred

over keyword-based searched as it works towards

understanding the same questions posed multiple ways. It

accounts for language styles and textures, and reduces the

number of false-equivalence results. The purpose of this work

is to create an architecture that can use the aims of semantic

search to both store data in the form of documents, and query

them to attract optimal results. Used properly, this architecture

can shape the way searches are carried out, resulting in

efficient and optimized retrieval of data.

Keywords: Semantic Search, Information Retrieval, Natural

Language Processing, Entity Extraction.

INTRODUCTION

Search Engines are one of the most popular tools for access to

Internet and data that people use on a daily basis. These Web

Search Engines return billions of responses to billions of

different queries every day. Most modern search engines aim

to go beyond retrieving relevant documents. In order to satisfy

the needs of the common user, they try to understand the

user’s intent in order to provide the most relevant results to

user’s query. The most crucial step towards reaching this goal

is identifying the entity and intent behind the user’s specific

query. This helps in returning semantically accurate results.

Online search in many sites remains very much keyword-

based to this day. This means whenever you enter words

describing what you are looking for, the retrieved results will

contain the search terms you used exactly as they are. With

keyboard based search, if you type in “copy machine”, you

will see pages having the words “copy” and “machine” on

them, but not a “multi-purpose printer”. Although a

multipurpose printer might be the thing you were actually

looking for. Keyword-based search recognizes the form of the

words, and ignores their meaning. From a language based

perspective, this is not the optimal way of retrieving data.

Users are expected to have full knowledge of the

terminologies of their domain of study, which is not always

possible. A remedy for such Search Engine Fatigue comes in

the form of Semantic Search. In contrast to keyword-based

search, the goal of semantic search is to understand the intent

behind a user’s query and find information based not just on

the presence of the words, but also on their meaning.

Natural Language Processing (NLP) is broadly defined as the

automatic manipulation of natural language, like speech and

text, by software. As humans, we can attempt to understand

various language styles and textures, provided we know the

basic language being spoken. These are features of our world

that our brain processes instantly. For example, our brain

knows that the sentences, ‘I need a place to work out of.’ and

‘I need a place out of which to work.’ We can do it with such

ease, that we end up taking this ability for granted. However,

in the world of software, this is a much bigger project. The

study of natural language processing grew out of the field of

linguistics and was motivated with the rise of computers. It

has been around for more than 50 years. NLP basically sits at

the intersection of computer science, artificial intelligence and

computational linguistics. In this paper, we see a software

architecture for not only understanding simple sentences in

multiple forms, but also using these sentences as queries to

retrieve data.

The remainder of the paper is organized as follows: Prior Art

Section provides background knowledge on Semantic Search,

which form the foundation of the framework. Ontology Graph

and Domain Model Section discusses the graphs involved in

data storage and creation of domain ontology. Workflow

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11707-11714

© Research India Publications. http://www.ripublication.com

11708

Management System Section describes the workflow

management, advantages of the Microservice based

Architecture and the message broker Kafka which is used for

communication between the microservices. Indexing and

Query Processing Section shows the implemented system

using the indexing and query processing pipelines. Results

Section displays the results and the last section before the

Acknowledgement provides the conclusions along with future

perspectives.

PRIOR ART

There has been some prior art in the field of semantic search.

For example, Google has come a long way in making its

search semantic. A researcher can frame a question in many

ways to get nearly the same documents as search results.

Individual contributors, such as Thomas Lukasiewicz

(University of Oxford, UK) dedicate their time to

understanding this querying process and optimizing it.

Researchers, Qazi Mudassar Ilyas, Yang Zong Kai and

Muhammad Adeel Talib (Department of Electronics and

Information Engineering, Huazhong University of Science

and Technology, Wuhan, China) came up with an architecture

to serve this same purpose. Over time, one thing has become

clear. We cannot rely on keyword-based searches anymore.

As David Amerland said, “I am a firm believer that

knowledge is power but only if it leads to comprehension.”

Since 1990, many researchers and innovative people have

devoted time, energy, and resources to creating useful search

engines. This is because we know that the faster we get

answers to our questions, the quicker we can push any and all

fields of research and development forward. The faster and

more accurate our results, the easier it is for students to learn,

write a paper, or share their thoughts. With each step the

search engines take forward, we can make it more comfortable

and convenient for people to get their queries answered.

After considering the prior art, we have come up with the

semantic search architecture discussed in this paper. We

believe this architecture of query-processing dominates over

other architectures in terms of the appropriateness of results

obtained. With proper training, the model can potentially

understand all dialects of English spoken throughout the

world.

Ontology Graph and Domain Model

Ontology is defined as an explicit formal specification of the

terms in the domain and relations among them. It is primarily

used to capture knowledge of any particular domain. The

major advantage of use of an ontology is that it will provide a

globally unique identifier for all concepts. Advantages of

using an ontology is that it:

 Helps avoid ambiguity of terms

 Helps share common understanding of the

structure of information among the users

 Enables reuse

 Analyzes the domain knowledge.

 Enables the merging of already existing

knowledge, thereby expanding it further.

To develop an ontology for any domain, a set of questions is

formulated. These are the questions that the envisioned

knowledge-based agent should be able to answer. This is also

known as schema. Based on these questions, some of the

concepts, sub concepts, relationships, features and instances

that are defined as the part of the ontology can be identified.

These questions are formed, taking into consideration the

different ways people all around the world would ask that

particular question. In any domain, controlled vocabulary of

words from that domain is taken for knowledge representation.

When representing knowledge for the domain, controlled

vocabulary helps avoid the use of duplicate, arbitrary or

perplex words which would lead to inconsistent knowledge. It

also prevents misspelling of words. Ontology is implemented

in almost all fields of study (medical, space, food, aviation,

commerce, linguistics, agriculture etc.).

Here, we picked out a domain (Java) as we had expertise in

Java and created an ontology for the “Java” domain. We can

easily replace the domain by collecting enough information

about it from domain experts and creating an ontology out of

it. We stored the entire ontology using a graph and we used

neo4j for this purpose. Neo4j is a graph database management

system developed by neo4j, Inc. Neo4j has an easy-to-learn

and easy-to-use query language and a web based, graphical

interface which allows users to easily browse and explore the

graph. Also, it is fast for querying and scales very well to

handle larger datasets.

Figure-1: Sample Ontology for the Domain “Java”

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11707-11714

© Research India Publications. http://www.ripublication.com

11709

Here is a sample screenshot from our ontology in the chosen

domain ‘Java’. We can see that ‘class’, ‘interface’,

‘polymorphism’, etc. are the concepts of ‘Java’. Also, ‘abstract

class’ ‘anonymous class’ and ‘inner class’ are sub-concepts of

‘class’ as indicated by the relationship between them. In this

way, we modelled the entire concept graph based on our

knowledge in Java.

Similar to the concept graph, there is an intent graph where

most of the words anticipated from the search query are

classified into 6 intents and put under their respective intent

nodes, i.e. Basic, Tutorial, Example, Getting Started,

Complete Reference and Troubleshoot. Words like define,

explain, why, list, what, etc. indicate that the user is looking to

learn basics of a concept in java. So, all such words are

included under the Basic node in the intent graph. Words like

code, solution, example, etc. are kept under Example node.

Here we divided the user query into tokens using NLP

techniques. We search for each token in the intent graph and

figure out the intent of the user in order to achieve better

results.

This provides a huge advantage, as we can then display results

truly based on the intent of the users’ queries. For example, a

query with ‘Basic’ intent will give results containing basic

definitions and theory. A query with the intent as ‘Tutorial’

will give more videos on how to accomplish the task at hand.

It will also give step by step instructions and algorithms for

completing the task.

Table-1: List of Six Intents and their Child Nodes in the Intent

Graph

Node ID

(INT)

Intent

(Parent Node)

Example Child Nodes

1 Basic What, Describe, Explain, Define,

Fundamental, Elementary, List.

2 Tutorial How, Tutorial, Learn, Course.

3 Example Example, Code, Solution.

4 Getting Started Install, Download, Get Started

5 Complete

Reference

Documentation, Material

6 Troubleshoot Troubleshoot, Rectify, Solve

WORKFLOW MANAGEMENT SYSTEM

A. Microservice Based Architecture

This paper proposes an architecture for implementing the

Semantic Search using microservices. Microservices, also

known as microservice based architecture is an architectural

style that structures an application as a collection of loosely

coupled services, enabling the continuous deployment of

large/complex applications. One of the greatest advantages of

this architectural style is that we make sure each microservice

is performing only one operation. This is known as the Single

Responsibility Principle. Each of these services can easily be

deployed and then redeployed independently without

compromising the integrity of the application. This is very

effective during debugging, and during testing and

verification.

B. Message Transfer System

We used the message broker Apache Kafka for the

communication between the microservices. Kafka is preferred

as it does not require large hardware, and is capable of

handling high-velocity and high-volume data. Kafka is able to

support message throughput of thousands of messages per

second, perfect for search engines. It has the capability to

handle these messages with a very low latency (in

the range of milliseconds). We use different Kafka topics to

handle each transaction between two services. For example,

messages going from Crawler to Parser (refer architecture

below) have a topic of ‘crawled’. Messages transferred from

Parser to Indexer have a topic of ‘parsed’. This allows the

message transfer to be simple and concise.

Indexing and Query Processing

This paper section describes our work in the semantic search

engine application. The implementation is divided into two

pipelines which performs the following tasks.

 Indexing huge number of documents related to our

domain and storing them in the graph database

 Implementing a query processing pipeline which takes

in a user query as an input and fetches the related

documents using the concept and intent, which are

extracted using various NLP methods.

This diagram shows the NLP pipeline, used to better

understand the intent of the user’s query. It also shows the

indexing pipeline, used to parse documents and categorize

them according to their metadata, contents, etc. These two

pipelines, working simultaneously, give us semantically

optimized search results.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11707-11714

© Research India Publications. http://www.ripublication.com

11710

Figure-2: System Architecture Indicating Indexing Pipeline, Query Processing Pipeline and Knowledge Graphs

A. Indexing Pipeline

Indexing of web documents is divided into three components:

Crawler, Parser and Indexer. The Crawler, also called the

Spider, traverses the web collecting information. It stores the

information into a huge repository after being compressed.

The Parser follows hyperlinks given by the crawler across the

web collecting information in the form of HTML web pages.

The indexing module takes these pages and assigns an index

to each of them based on their intents (explained in detail

later.) It also pushes the pages into the database according to

their indices. Every Web document has an associated ID

number called document identifier, which is assigned

whenever a new URL is parsed out of a web page.

Crawler: Crawler starts with the list of seed URLs as the

initial input. These URLs can be obtained from any search

engine API available. Here, Google’s Custom Search API was

used for this purpose. All we need to provide Google’s API is

the domain and a concept name and the API returns a bunch of

URLs for the crawler to start its work. Crawler traverses the

web to download the corresponding webpage in XML format,

using the java library Jsoup. It sends the downloaded XML

document as input to the Parser.

Parser: The XML document obtained from crawler and the

webpage is now stored in the form of keywords present in

them. These keywords are fetched from the ontology created

for this particular domain. These keywords alone are not

sufficient for retrieving information about the webpage. The

presence of keyword in various HTML tags of web documents

should be considered for indexing the web pages. The

proposed parsing technique has considered the presence of

keywords in various HTML tags of web documents such as

head, title, body and link. A certain weight is assigned to each

of these tags and the XML document is traversed for these

keywords. Each keyword is also given a value. The score of

each keyword is determined based on where it occurred in the

HTML page and the number of times it occurred in that place.

A map containing all the keywords as keys and their

respective scores as values is sent as input to the indexer

service.

KS= ∑ (𝑻𝑺 ∗ 𝑲 ∗ 𝑵)
𝒏𝒕𝒂𝒈
𝒋=𝟏

Where,

 KS=Keyword Score

TS=Tag Score

K=Individual Keyword Score

N=Frequency of Keyword in tag

ntag =Number of tags

Indexer: Indexing refers to the organization of data according

to a specific schema or plan, thereby making information more

presentable and accessible. In this service we calculate the

total score of the URL (webpage) for each intent.

The Indexer takes the concept from the Crawler and the

Keyword Score for each keyword form the Parser. From here,

it goes to the intent graph and finds the parent node (true

intent) of each keyword. The sum of all KS’s under each

parent node is the total intent score for that intent. The indexed

URL is now attached to its respective concept in the ontology

(concept) graph along with its scores.

E.g. the final scores can be (Basic: 140, Tutorial: 423,

Troubleshooting: 411, etc.). This indicates that the document

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11707-11714

© Research India Publications. http://www.ripublication.com

11711

is primarily a tutorial, but can also be shown as a result for a

troubleshooting intent, towards the end of the list of results.

B. Query Processing Pipeline

Spell Checker: The first block of the NLP pipeline is the

spellchecker. It checks the spelling of each word of the user

query, by checking the words against the dictionary it knows.

This is a RESTful spellcheck web service provider created

using Hunspell dictionaries. The database that this service uses

can be easily modified by the developer in order to add or

subtract words. Once the query has been checked for spelling

errors and modified (if needed), it is sent to the PoS Tagger.

Part-Of-Speech Tagger: The Part-Of-Speech Tagger (PoS

Tagger) is a piece of software that reads text in some language

(here, English) and assigns parts of speech to each word

(noun, verb, adjective, etc.). Part-of-Speech tagging is not as

simple as having a list of words and their parts of speech,

because some words can represent more than one part of

speech at different times (e.g. Alert can be both a noun and

verb). Also, some parts of speech are complex and unspoken.

The PoS Tagger takes care of all these scenarios, by referring

to its dictionary. This dictionary can be modified according to

the users’ needs, if every this becomes necessary. The PoS

Tagger then sends the original query along with all the parts of

speeches to the Lemmatizer.

Lemmatizer: The goal of lemmatization is to reduce

derivationally related forms of a word to a common base form.

Unlike stemming, which refers to a crude heuristic process

that chops off the ends of words in the hope of achieving this

goal correctly most of the time, and often includes the removal

of derivational affixes, lemmatization does things properly

with the use of a vocabulary and morphological analysis of

words, normally aiming to remove inflectional endings only

and to return the base or dictionary form of a word, which is

known as lemma. If “saw” is passed through lemmatizer, it

would return either “see” or “saw” based on whether the use

of token was a verb or a noun. The part of speech of the token

is already found when passed through the Part-of-Speech

tagger. The lemmatizer sends the lemmatized query to the

NER service for further processing.

NER Service: The process of finding names, people, places,

and other entities, from a given text is known as Named Entity

Recognition. Here, the domain being Java, we used the NER

Service to separate out tokens with words related to Java. We

identify this as the ‘concept’ of the query. This is done using

the opennlp libraries TokenNameFinderModel and

NameFinderME.

The tokens coming from the NER Service can be either single

word or multi-word, formed based on the rules extracted

mainly from the trained data set. Data is fed to the service in

the format:

E.g. Tell me about <START: keyword> Abstract Class

<END>

Here, “\t” is used to denote a tab in the query, and CR is used

to signify a new line.

Building the NER Service can be tricky. For our purposes, we

need the NER Service to identify any and all intents related to

the domain ‘Java’. This means, there need to be enough

sample queries (data points) for it to understand multiple

intents, sometimes more than one in one user query. The NER

Service does not only learn what the concept can be, it also

learns what it should not be. For example, in the example

given above, the NER Service learns that ‘Abstract Class’ can

be a query, and all that ‘Tell me about’ is not a concept. Also,

we need the micro-service to understand that queries can be of

many lengths. Until we give it a surplus of data points with

three-letter concepts, it will not understand that three letter

concepts can exist. As a results, it will try to find a one or two

letter concept, thus leading to the wrong results. A very large

number of data points must be given to get accurate results.

Once this is taken care of, our query processing pipeline can

extract the concept of any query.

When ample data is entered into the data set, taking into

considerations the various ways the same query can be

expressed, this service learns to identify the ‘concept’ of the

query. (Here, ‘Abstract Class’). The NER Service then sends

the query along with the identified concept to the Stop Words

Eliminator.

Stop Words Eliminator: Some extremely common words (a,

an, and, are, as, at, be, by, for, from, has, he, in, is, it, its, of,

on, that, to, was, were, will, etc.) are extracted from the query.

This is because they are clearly not the concept or intent of the

query. These words are called stop words. Stop word

elimination is a simple but important aspect of many text

mining applications as it has the following advantages:

 Reduces memory overhead (since words in

consideration are eliminated)

 Reduces noise and false positives (since the focus is

on the important terms)

 Can potentially improve power of prediction

(dependent on application).

In our service we used an array obtained from various NLP

sources containing the stop words. Like the spellchecker, the

stop words database can be modified easily by the developer

as and when needed.

Intent Search Service: This service takes the tokens from the

SWE service and searches for these tokens in the intent graph,

present in Neo4j graph DB. Once a token is found in the intent

graph, its parent is identified as the intent of the user’s query.

When the user types in the query “Tell me something about

interfaces”, it goes through the NLP pipeline. Here, NER and

Intent Search Service identify the concept and intent of the

query respectively as ‘interface’ and ‘Basic’. The concept

graph is searched for the concept of the query, and the

required URLs are returned. The documents are displayed in

descending order of the scores given by the indexer for that

particular intent.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11707-11714

© Research India Publications. http://www.ripublication.com

11712

IMPLEMENTATION AND RESULTS

A. Theoretical Implementation and Expected Results

The figure below shows the processing of the query “Tell me

something about interface”. This is taken as an example to

show how the query is altered in each service of the query

processing pipeline. The inputs and outputs of each block

(micro-service) are given on the arrows leading in and out of

the micro-service respectively.

Figure 3: Theoretical Implementation of Query Processing Pipeline.

B. System Implementation and Experimental Results

When the query “Tell me something about interface” is

entered, the NLP pipeline identifies the concept as “interface”

and the intent of the user’s query as “Basic. The documents

(URLs) are fetched from the graph database and displayed

here ranked according to their Basic scores. The documents

relevant to the users’ queries are returned accurately and

efficiently.

The UI used can be changed according to the developers and

users’ styles and preferences. We created a UI keeping in

mind that simplicity and ease of understand are key. This UI

shows the URLs to the documents relevant to the query along

with their titles and scores of its parent intent. This is shown

in the figure below.

Figure-3: Obtained Search Results for the Query “Tell me

something about interfaces”

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11707-11714

© Research India Publications. http://www.ripublication.com

11713

The order of these results can be altered according to the

needs of the organization. This can easily be done by

changing the structure of the intent graph.

We have implemented this Semantic Search Engine using

Java in a linux environment. Here, the testing was done first

on localhost. The entire project was then deployed on AWS

with proper results. Query Execution time is affected by the

length of the query. The average execution time was 1.12

seconds on localhost for one-word concept queries and 1.6

seconds for two-word concept queries. When we executed the

same on AWS, it was 0.74 seconds and 0.86 seconds

respectively. However, more powerful servers are used by

industry-scaled systems. This will reduce the time required to

carry out the query significantly. Performance testing was

done using JMeter. Load testing revealed a 9,998/10,000 hit

success rate. We see that the architecture is stable and returns

results efficiently.

CONCLUSION AND FUTURE WORK

The need for fast and accurate search results is becoming

more and more important as the size of the Web has

continually kept growing. The retrieval of relevant data is

more complex as more people and thus more ontologies come

into play each day. As shown above, this architecture of

querying for properly indexed documents will have a

significant impact on how we search for data on the Web.

In the future, this architecture can be best used in businesses,

schools, hospitals etc. with large data sets and documents to

handle and organize. This application can be used with any

domain just by creating an ontology from the data provided by

the domain experts and modelling the intent graph according

to that particular domain.

The algorithm for indexing documents can be further

enhanced. This can be done by taking into account how many

users have previously searched for a document, the age of the

domain, the speed of loading the documents and many other

such factors.

Machine learning techniques can be added in to enhance

querying. Thus, the more the application is used, the better it

will be at retrieving relevant documents. Also, the more input

we add to our training data set, the more accurate the results

will be. This can be done by conducting and considering

speech surveys to understand how people from different parts

of the world best communicate.

Overall, this architecture produces efficient and accurate

results, and the project can be taken further in great leaps.

ACKNOWLEDGEMENTS

The authors wish to thank their colleagues at National

Institute of Information Technology, Bangalore, India for their

participation, insights, and patience.

REFERENCES

[1] P. Hema Priya, R. Ranga Raj (2013, Dec 13). An

Improved Search Engine by Semantic Web Using

Ontology. International Journal of Science and

Research (IJSR), 2(12), 403-408.

[2] Sunny Lam, (2001, Feb 9).The Overview of Web

Search Engines. Available:

https://cs.uwaterloo.ca/~tozsu/courses/cs748t/surveys

/sunny.pdf

[3] Er. Sugandha Sharma, Er. Seema Rani (2014, June

6).Survey on E-mail Spam Detection Using NLP.

International Journal of Advanced Research in

Computer Science and Software Engineering

(IJARCSSE), 4(5) 55-61.

[4] Bikel, D., & Zitouni, I. (2012). Multilingual natural

language processing applications: from theory to

practice. IBM Press pp 286.

[5] Pascal Hitzler, Krzysztof Janowicz and Adila A.

Krisnadhi (2015). Ontology Modelling with Domain

Experts: The GeoVoCamp experience. Available:

http://daselab.cs.wright.edu/pub2/2015-diversitypp-

invited.pdf

[6] M. Song and Y. Wu, Handbook of Research on Text

and Web Mining Technology, Hershey, PA, USA:

IGI Global, 2009, pp. 228

[7] Bandyopadhyay, S. (Ed.). (2012). Emerging

Applications of Natural Language Processing:

Concepts and New Research: Concepts and New

Research. IGI Global.

[8] De Laat, M., Lally, V., Lipponen, L., & Simons, R. J.

(2007). Investigating patterns of interaction in

networked learning and computer-supported

collaborative learning: A role for Social Network

Analysis. International Journal of Computer-

Supported Collaborative Learning, 2(1), 87-103.

[9] Homa B. Hashemi, Amir Asiaee, Reiner Kraft. Query

Intent Detection using Convolutional Neural

Networks. Available:

http://people.cs.pitt.edu/~hashemi/papers/QRUMS20

16_HBHashemi.pdf

[10] The Stanford Natural Language Processing Group.

(2012, Nov 15). Stanford Named Entity recognizer

(NER) [Online]. Available:

http://nlp.stanford.edu/software/CRF-

NER.shtml#About

[11] Princeton University. (2012, Nov 10). WordNet:

A Lexical database for English [Online]. Available:

http://word net.princeton.edu/

[12] Louis, A. (2017). Natural Language Processing for

Social Media.

[13] Liu, B. (2012). Sentiment analysis and opinion

mining. Synthesis lectures on human language

technologies, 5(1), 1-167.

https://cs.uwaterloo.ca/~tozsu/courses/cs748t/surveys/sunny.pdf
https://cs.uwaterloo.ca/~tozsu/courses/cs748t/surveys/sunny.pdf
http://people.cs.pitt.edu/~hashemi/papers/QRUMS2016_HBHashemi.pdf
http://people.cs.pitt.edu/~hashemi/papers/QRUMS2016_HBHashemi.pdf
http://word/

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11707-11714

© Research India Publications. http://www.ripublication.com

11714

[14] Pooja Mudgil, A. K. Sharma, Pooja Gupta. An

Improved Indexing Mechanism to Index Web

Documents. 5th International Conference on

Computational Intelligence and Communication

Networks. pp- 460-464,2013.

[15] Gupta, V., & Lehal, G. S. (2009). A survey of text

mining techniques and applications. Journal of
emerging technologies in web intelligence, 1(1), 60-

76.

[16] Kasemsap, K. (2016). Text Mining: Current Trends

and Applications. Web Data Mining and the

Development of Knowledge-Based Decision Support

Systems, 338.

[17] Agrawal R, Srikant R (1994) Fast algorithms for

mining association rules. In: Proceedings of the 20th

VLDB conference, pp 487–499

[18] Lin, J., & Dyer, C. (2010). Data-intensive text

processing with MapReduce. Synthesis Lectures on

Human Language Technologies, 3(1), 1-177.

