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Abstract 

The abundance of information paved the way for 

personalization of web information retrieval systems in order 

to garner the attention of the web users. With an inclination 

towards customer oriented service, the online systems render 

recommendations to provide items of interest to the web user. 

Personalization in recommendation systems is achieved by 

creation of custom alternatives for delivering the right 

experience to the right user at the right time through the right 

device.   Domain relevant personalization is the need of the 

hour and research in recommendation system is towards 

identifying the domain specific characteristics for providing 

more accurate recommendations. This research article 

provides an overview of various domain adaptation strategies 

incorporated and practiced in the recommendation system 

literature. The article focus on domain based personal agents 

in the prior research of the recommendation system for the 

domain of music, video, product sale, tourism, social network, 

news, E-learning and restaurant.  
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INTRODUCTION 

In recent years, the world has seen the explosive growth of 

information in the form of web services. The huge growth of 

information is impeding the web information retrieval systems 

to get the maximum attention of the web users. The web user 

attention on the screen is short, and one of the major 

achievements of any website is getting the attention of web 

users who are facing the information explosion [1] [2].  One 

of the ways to influence the users is personalizing the content 

on the webpage. Personalization is the provision to the 

individual with tailored products, services or information [3]. 

Organizations have long personalized their websites for 

customer segments, and with an inclination towards customer 

oriented service, there is a need to understand the customers 

for providing products/services of interest and hence, 

recommender systems have become popular both 

commercially and in the research community. 

Recommender system adds value both to the provider and the 

consumer. In the web based service environment like online 

shops, movie rental, news and E-learning, the provider gives 

personalized service to the consumer, increase his/her trust 

and also persuade and promote products using recommender 

systems. The recommender system helps the consumer to 

narrow down his/her set of choices from the abundant list and 

also help in discovering new items of interest. The two basic 

entities of any recommender system are items, which are the 

product / services, and users, who are procuring those 

products / services. These basic entities of the recommender 

system are represented as a user-item matrix, a tensor or a 

graph. 

The recommender system employs the filtering mechanisms 

to provide the item of interest to the user. The filtering 

techniques used in recommender systems are based on: the 

knowledge-base - the prior information that the system has 

about the item/user; the input data - the information about the 

preference of item/user communicated to the recommender 

system that assist in generating recommendations; and the 

algorithm - combines the prior knowledge and the input data 

to arrive at the recommendation list for a specific user. The 

various filtering techniques used by recommender systems 

are: Content Based - the user profile is matched with item 

description to make recommendation; Collaborative Filter 

Based - similar items/users are grouped, and based on the 

‘wisdom of crowd’, items are recommended to users; Context 

Aware - dynamically assess the user needs based on the 

context to provide item of interest. Context is a multi faceted 

concept which refers to conditions that characterizes the 

identities and attributes of people and devices, the locations of 

people and devices, the activities of the people, and also the 

roles and intentions of people when participating in the 

activities; Hybrid – combines more than one of the above 

mentioned methods to provide recommendation. 

The remainder of the article is organized as follows: Section 2 

describes domain based personalization of the 

recommendation system for the domain of music, video, 

product sale, tourism, social network, news, E-learning and 

restaurant. Section 3 provides the conclusion.  

 

RECOMMENDER SYSTEM: PERSONALIZATION 

Personalization in recommender system is the creation of 

custom alternatives that meets the individual customer’s 

preferences based on the human behaviour and the domain 

knowledge [4]. Human behaviour is defined as “the potential 

and expressed capacity for physical, mental and social activity 

during the phases of human life” and by definition, domain 

knowledge is the knowledge specific to a “particular field of 

thought, activity or interest especially one over which 

someone has control, influence or rights”. The human 

behavioural inclination to the domain varies. Personalization 

in recommender systems is achieved by delivering relevant, 

tailored experience to the right user at the right time on the 

right device meeting the individual user needs by combining 
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historical, behavioural and profile data with real-time 

situational feedback and there by exploiting recommenders as 

a personalization tool tailoring products / services of interest 

to the users. 

Recommenders also assist and augment the process of making 

the choices between the alternatives when an individual does 

not have sufficient experience in making the choice. Concept 

based human understanding of categorizing of items with 

respect to the domain and combining the domain based 

personal agents in the recommender techniques is essential to 

make appropriate recommendation [5]. Hence knowledge 

specific to the domain is incorporated with the design of the 

recommendation system for a personalized user experience. A 

comprehensive review of the various domain adaptation 

methods incorporated in the prior research of the 

recommendation system is presented for the domain of music, 

video, product sale, tourism, social network, news, E-learning 

and restaurant.  

 

Music Domain 

Music is an art with elements such as pitch, dynamics, 

intensity, rhythm, structures as contrast, repetition and 

continuity. Online music is available as downloadable audio 

files or as audio streams. Users listen to music that fit their 

taste, preference and context. With abounding number of 

digital music available, music recommendation plays a vital 

role in providing relevant music to users. Human emotion 

influences music listening and music elicits emotional 

responses from listeners [6] [7]. The emotion transition model 

of listeners is constructed for generating dynamic playlist to 

listeners [8]. 

The unique characteristic of music listeners is that they often 

repeat their favourite songs, and music recommendation 

system exploits this characteristic to identify and increase the 

occurrence of those songs in the recommendation list [9]. The 

repeated occurrence of the songs may be the same pattern of 

music (polysemy) or the same song (synonymy). Listener’s 

preference with the mood, location, time and event in daily 

life influences the choice of music and a context based 

ontology helps in matching the music with the context for 

providing relevant recommendation [10].  The songs repeat in 

the recommendation list based on the mood, location, time 

and event in daily life. In today’s virtual social environment, 

social tagging is an important source for information retrieval 

system. Alexandros et al. proposed a cubic correlation 

between users, tags, and items for music recommendation 

system [11]. 

 

Video Domain 

The ubiquitous availability of internet and the natural human 

inclination for entertainment is making online video on-

demand service such as Netflix, Amazon-Prime, a popular 

business. The recommendation system for such services is 

deployed as a business tool for helping the customers with the 

preference list of videos. It also helps the providers in 

maximizing their profit by evoking continuous watching of 

videos [12]. Recommendation system as a business 

promotional tool is designed with balanced characteristics to 

prevent customers from abandonment of service to an 

alternate video service provider. Emotions also influence a 

user’s choice of video content [13]. The choice of a user 

watching a particular video depends on the mood, location, 

time, event and the companion. A hybrid distributed 

framework of an online-offline recommendation system using 

diffusion principle, in which the offline learning reduces the 

working limits of the online learning algorithm, provides an 

incremental and scalable system [14]. 

Recommendation system uses the detected emotion to 

rationally select videos for the users. Any information system 

assesses emotions either explicitly or implicitly [15]. 

Emotions of the user are explicitly assessed using emoticons 

or questionnaires where as implicit assessment is done using 

video cameras, speech recognition etc. Affective 

recommendation systems using emotion detection enhance the 

user experience by adding user centric features to the 

mechanized database approaches [16]. 

Similar to the phenomenon prevailing in music listeners, the 

movie watchers, especially children enjoy watching the same 

video content more than once, though, usually video watching 

is novelty driven. The video recommendation system also 

exploits continuity in videos watching in case of episodes of 

online TV shows and movie sequels [17]. The 

recommendation system implemented in video streaming 

websites such as YouTube scales dynamically since millions 

of users upload and watch videos every second. A 

recommendation system for such a web application has 

sophisticated mechanism for scaling and freshness [18]. 

Context matters in video recommendation: What to 

recommend? When to recommend? Whom to recommend? 

The factors such as place, time and companionship have an 

immense influence on the choice of the video and hence must 

be considered for recommendation [19]. 

 

Product Domain 

Product recommendations in E-commerce websites improve 

sales by converting browsers to buyers, by suggesting cross-

selling of additional products to a purchase and also by 

creating value added relationship with the customer [20].A 

software product line has managed set of features that satisfies 

the specific need of a particular market segment. 

Recommendation system used in E-commerce websites target 

a particular market segment using their set of unique features 

and the product line feature knowledge imbibed 

recommendations enable fast market entry, flexible response 

and adaptable personalization [21].   

 Recommendation system is a one-to-one online marketing 

tool in which a particular event (search option) triggered by 

the customer facilitates the system to provide a list of relevant 

items which are in the scope of the purchase [22]. In the E-

commerce domain, the customer details such as gender, age, 

marital status, number of children and monetary status 

determine the purchase of the products. Customers relative 

spending on different product lines provide effective 
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mechanism for recommendation algorithm to be used as a 

target marketing tool [23]. The system implicitly gathers 

information of the products added to the cart, the frequency of 

purchase of the product and the price of the purchased product 

to determine relevant products for recommendation to a user 

[24]. The temporal association among the items in the cart is 

an important criterion for future recommendations [25]. 

 

Tourism Domain 

Advances in information and communication technology are 

promoting the tourism industry by providing the tourists with 

access to inexpensive, accurate, reliable information about 

restaurants, hotels, and tourist attractions. The online tourist 

information system exploits the high degree of temporal and 

spatial regularity in human mobility patterns [26]. On a 

broader scope, the human behaviour is regular and predictable 

[27]. The predictability of human mobility and behaviour is 

used to create personalized model for recommendation based 

on behavioural patterns. The geographical distance a person 

would travel from the ‘place-of-stay’ is same and hence where 

ever that person travels, the ‘places-to-visit’ recommended 

must be within the geographical distance.  The inherent 

similarity in the travel patterns is used in ‘places-to-visit’ / 

‘things-to-do’ recommendations for the mobile users with 

relevance to their current context.   

Location plays a significant role in users’ check-in behaviour 

to a point of interest. Location based grouping of users 

provide active user classification for recommending relevant 

point of interest [28].  The correlation between users in the 

location based social network (LSBN) helps in filtering 

potential locations for recommendation [29]. Point of interest 

recommendation is personalized by incorporating user 

preference information with location aware services provided 

by LSBNs [30]. The geographical influence on location (i.e.) 

the proximity between the points of interest is exploited to 

provide point of interest recommendations to users [31]. 

Another important characteristic of the tourism domain is that 

people travel with one or more persons. Hence considering the 

heterogeneous preferences of the tourist group tailors the 

recommendation of the tourist attraction generic to the group 

[32]. 

 

Social Network Domain 

Traditionally, in real life, friends are influenced by 

geographical distance between each other. In this virtual age, 

people connect with others based on life style, social status, 

moral values, personal attitude and existing social relations 

[33]. These characteristics are pondered in designing friend 

recommendation in social networks. Zhibo et al. exploited the 

user life style information extracted from smart phone sensors 

for friend recommendation [34].  

The semantic structure of social tags derives similar attitude 

persons and the topological structure of the user’s social 

network derives the existing social relations for friend 

recommendation [35]. The personal attitude of users is 

derived from the content postings and the existing 

relationships in the social network. The derived personal 

attitude helps in recommending new friends [36]. The virtual 

social network helps in developing effective real world 

interactions. The similarity in the places visited and the 

geographical nearness extracts like-minded people in joining 

hand for organizing or participating a real community event 

[37]. 

 

News Domain 

In this digital era, scrolling through a tablet is much easier 

than reading a newspaper. Each new event has a 24 hour news 

cycle and it has to be delivered in a compelling manner to stay 

ahead of the competitors. News recommendation must filter 

the news considering the 24-hour cycle.  The volume of online 

news doubles every year along with the users [38].  

Personalized news displaying helps to keep the users hooked 

on to online news portals. The prediction of the next news 

read by the user is an important criterion in the news domain 

recommendation [39]. The time sequence characteristic of the 

user behaviour is exploited for news recommendation.  

The contextual information obtained from implicit feedback 

such as the time of day, the age of a read news article and the 

time spent with the news article helps to grapple with the 

dynamic nature of the news recommendation [40]. The news 

domain timeliness and the concept drift phenomenon require 

recommendation algorithms to update its recommendation list 

on recency and popularity of the news on a regular and 

reliable basis [41]. Lei et al. exploited the short shelf life, the 

reading time sequence characteristic of news article and the 

news locality for implementing topic models for news 

recommendation [42]. 

 

E-learning Domain 

Online web based learning potentially renders real time 

collaboration and instant interactivity regardless of time or 

location [43]. The adaptive E-learning environment 

determines “what” and “when” to deliver the learning 

materials [44]. The learning style and the domain level 

knowledge determine the user preference of the learning 

objects (documents, video lectures). Learner’s historical 

sequential learning pattern collected from their interaction 

with the system helps for resource pre-fetching in the learning 

environment [45].  A sustained meaningful learning 

relationship is achieved by adaptive sequencing of the 

courseware [46].  

Smart learning environment customizes the learning path of 

the learners. Learning object navigation guidance enhances 

the learner’s learning achievement [47]. The accuracy and 

correctness of the learning object encourages learners to 

systematically construct their personal knowledge [48]. 

Standardized courseware recommendation with appropriate 

learning assistance sustains learners with a particular online 

web based learning platform. Memory retention is unique to 

an individual and based on the individual’s learning memory 

cycle, learning objects which are recommended to users [49]. 

Soulef et al. designed a personalized recommendation system 
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by profiling the learner’s knowledge level and memory 

capacity [50]. 

 

Restaurant Domain 

Usually, people decide to dine at the nick of the time and 

recommendation system provides users with suitable, 

affordable and easily accessible restaurants. Hence the context 

information such as the place and the time of search is 

exploited to render the restaurant recommendation service 

[51]. The features of the recommended restaurant exhibit the 

user preference in the past [52]. The similarity in the dining 

experience, the price factor and the type of cuisine is also 

proved effective in restaurant recommendation [53]. 

A visualized representation of the location of the restaurant 

and the approach to the restaurant is an added feature of the 

recommendation service. Human innate nature in exploration 

is dominant in his dining behaviour. The novelty seeking 

tendency is analyzed from the historical visited restaurants to 

provide the recommendation [54]. The recommendation of 

items in the restaurant menu considering the health 

specification of the customer and the environment condition 

enables personalized well-being care for the individual [55]. 

Restaurant recommendation should consider the preference of 

more than a single person when a group of persons needed the 

service together. A multi criteria model with each criterion 

representing the preference of an individual in the group is 

required for recommending a restaurant for a group of users 

[56]. Table 1 summarizes the domain, filtering type, and the 

domain characteristic used in the recommender system. 

 

Table 1. Summary of domain characteristics used in RS 

Domain 

 

Filtering Type Domain Characteristic  

Music 

 

Content Based, Collaborative, Context 

Based 

Polysemy, Synonymy, Repetition of music, Listener’s emotion, Time, 

Location and Event 

Video 

 

Content Based, Collaborative, Context 

Based, Hybrid 

Scaling and freshness of online streaming videos, Movie Sequel, 

Business value, Targeted marketing tool, User’s emotion, Time, 

Location and Companion 

 

Product 

 

Collaborative, Hybrid Fast growing number of customers and products, Fast growing number 

of customers and products, Products purchased together, Frequently 

purchased products, Economics, Frequency and Price of products. 

 

Tourism Content Based, Collaborative, Context 

Based 

People travel in groups, Location centric, “word of mouth” influence, 

Relatedness of near geographical location, Regularity in human 

mobility. 

 

Social 

Network 

Content Based, Collaborative, Context 

Based 

Attitude, Taste, Lifestyle, Geographical nearness, Recency, Popularity 

News Collaborative, Context Based, Hybrid Volume, Volatility, Short shelf life, Reading time sequence 

characteristics of news article, News locality, Reading time, Age of the 

news article, Reading time sequence characteristics of articles. 

E-learning 

 

Content Based, Context Based, Hybrid Learner memory capacity, Learning style, Learner’s knowledge level, 

Dynamic sequencing of learning material, Ubiquitousness, Learner’s 

knowledge level, Learner memory capacity. 

Restaurant 

 

Context Based, Hybrid Weather condition, Companion, Novelty, Personal well-being, Time 

constraint 
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CONCLUSION 

The survey provides an overview of domain adaptation 

strategies exploited in the prior research for creating custom 

alternatives in providing a list of relevant items to the web 

users in the recommendation system. A detailed literature 

survey of the user and item characteristics in rendering 

domain specific recommendation is presented for the 

domain of music, video, product sale, tourism, social 

network, news, E-learning and restaurant. The user and the 

item characteristics pertaining to the domain helps in 

rendering domain specific recommendation. Therefore, the 

online recommendation application must incorporate 

domain concepts for effective personalization. 
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