
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11816-11823

© Research India Publications. http://www.ripublication.com

11816

Empirical Evaluation of Software Design Patterns using Classification

Algorithms based Design Metrics

Moha Gupta Satwinder Singh
 M. Tech Assistant Professor

Central University of Punjab, India. Central University of Punjab, India.

Abstract

Software engineering has become very important for the

technology. It includes the study and application of the

engineering in designing, developing and maintaining the

software. The aim of software engineering is to produce

quality software to be delivered on time keeping it within

budget which satisfies the requirement. The patterns can be

detected by code inspections, automatic techniques, dynamic

techniques such as testing and assertions, using machine

learning and by static techniques. These design patterns can

be detected from the design metrics using machine learning

algorithms This study emphasis on detecting software design

pattern-based design metrics using machine learning

algorithm. The results surely depict that the design metrics

plays an important role in predicting the software design

patterns. The algorithms used are Naive Bayes and SVM and

they were able to predict the patterns from the software

metrics and gave good perceptiveness.

Keywords: Naïve Bayes, Design Patterns, SVM, Machine

learning, Software engineering, Coupling

INTRODUCTION

In context to software engineering, the software quality

computes that how the software will be designed and also how

the software conforms for that design. The software quality

has been upgraded from past few three decades. The reason

possible behind this is that the companies have started using

new technologies and techniques in the software

developmental process like CASE tools or object-oriented

models etc. All the aspects of the software quality are

interconnected and can have impact on others as well, the

impact can be negative or positive. The main reason for

involving software quality in software development is to get

the final product built as per the requirements specified. As in

today’s world, software engineering has become very

important for the technology. It includes the study and

application of the engineering in designing, developing and

maintaining the software. The aim of software engineering is

to produce quality software to be delivered on time keeping it

within budget which satisfies the requirement. It has a wide

range of applications in every field like in business software,

used for management and controlling of financial activities, in

artificial intelligence it is used for problem- solving

techniques, in web-based software used as an interface.

Software pattern detection is an important part in the software

development process. Pattern detection can be made by

various methods using different types of algorithms. There are

many studies that can be done using the software metrics. One

of them includes the detection of software patterns. Patterns

can be detected using manual and automatic approaches

where automatic method include Machine Learning

algorithms. The software patterns can also be detected using

software metrics. Supervised learning is being implemented

for detecting of software patterns from the software design

metrics. The software design metrics can be found by using

some software which will then be treated as an input to the

algorithm for detecting the software patterns. At the end, the

design pattern prediction model will be proposed from the

software metrics. Some studies are done on the design

patterns and design metrics.

LITERATURE REVIEW

(Chidamber et. al. 1994), developed six design metrics namely

WMC, DIT, CBO, LCOM, NOC and RFC. These design

metrics were evaluated analytically against another author

Weyukar, who proposed a set of the measurement principles.

Also a tool was developed for automatic data collection for

collecting data of these metrics at the two field sites for

examining the feasibility. The C&K metrics have some

limitations that it doesn’t account for the complexity which

arises from polymorphism and encapsulation, which was

further studied by (Li et. al. 1993), in which Li studied two

more commercial systems. Out of total six metrics by C&K,

five of them namely LCOM, RFC, DIT, WMC and NOC

helped in predicting the maintenance effort. Still many

researchers kept on proposing modifications on the metrics

like (Basili et. al. 1996), studied student projects and found

that WMC was correlated with the defects while LCOM was

not. Also, Basili studied that CBO, RFC, DIT and NOC were

also correlated. (Uchiyama et. al. 2011) proposed a pattern

detection technique using the software metrics and some

machine learning methods. In their technique, it judges

candidate for the role which compose the design patterns by

using the machine learning and measurement of metrics. It

distinguishes the design patterns where the class structure are

similar and also suppresses the false negatives. It was proved

that this technique is better than the old techniques. (Malhotra

et. al. 2012) discussed the relationship between fault

proneness and object oriented metrics using logistic regression

algorithm. Performance of the predicted models is evaluated

using Receiver Operating Characteristic (ROC) Analysis. In

other discussion, study used a statistical model which was

derived from logistic regression to calculate the threshold

values of Kemerer, object oriented and Chidamber metrics.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11816-11823

© Research India Publications. http://www.ripublication.com

11817

Threshold effects at the various risk levels was calculated

using the threshold values and he has also validated the use of

these threshold values on public domain, dataset, KC1 from

NASA and 2 open source promise datasets i.e. JEdit and IVY

using various data mining classifiers and machine learning

algorithms. Three different open source datasets i.e. Tomcat,

Sakura and Ant were used to perform inter project validation.

And the results depicted that proposed threshold methodology

performs well on the project having same or similar

characteristics.

(Okutan et. al. 2012) used Bayesian networks for determining

the probabilistic influential relationships between defect

proneness and software metrics. Other two metrics i.e. source

code quality (LOCQ) and number of developers (NOD) were

also used with the metrics already present in Promise Data

Repository. In total of 9 data sets of open source Promise Data

Repository were used. Using these metrics and datasets it was

found that response for class (RFC), lack of coding quality

(LOCQ) and lines of code (LOC) were the most effective

metrics while weighted method per class (WMC), lack of

cohesion methods (LCOM) and coupling objects (CBO) were

less effective metrics on the defect proneness. (Patil et. al.

2013), discussed the performance based on the incorrect and

correct instances of the data classification using J48 and Naïve

Bayes algorithms. The algorithms are used to compare and

evaluate the bank dataset and to maximize the true positive

rates while minimizing the false positive rates using the

WEKA tool. After experimentation it was concluded that

Naïve Bayes generated 184 correct instances while J48

generated 203 correct instances. Random Forest is widely

used in various fields and have various applications, it is a

group of classification algorithms, it is especially used with

larger datasets due to some of its best features such as OOB

error detection, Variable Importance measure and Proximity

(Zakariah, 2014). The paper also discusses many applications

of the Random Forest for classification of the dataset such as

Gene Classification, Network intrusion detection, Email spam

detection, Credit Card fraud detection and Text classification.

This paper focuses on use of the Random Forest features in

the applications like for selection of the required gene among

the genes, variable importance measure can be used which

helps in removing the less significant gene, and for detection

of the intrusion the outlier property of Random Forest is used.

In another paper, (Yadav et. al. 2015) integrated 3 classifiers

with simple k-means clustering algorithm while the

integration was applied on the bug data set. It was concluded

that k-means & Bayes net gives 0.0012 RMSE and 0.0002

MAE error and also it took less time to build. At the end out

of k-means & J48, k-means & Decision tree and k-means &

Bayes net, it was founded that k-means & Bayes net is the

best algorithm integration. (Arnu et. al. 2016), a meta-analysis

was conducted of 2001-2015 papers found where the novel

Random Forest algorithm was proposed and is then compared

to already proposed Random Forest algorithm. Many

limitations were studied like based on performance measures,

the estimation way of these measures and the methodology for

comparing the algorithms. And it was found that almost one-

third of results from the Random Forest papers, improvement

was not found in the performance when comparisons were

drawn using statistical tests.

Classifier models work by the learning patterns between

corresponding binary label and attributes of the software

which indicates whether a defect exists or not (Perreault et.

al., 2017). In the study, the performance of five different

classifiers were evaluated like Support Vector Machines

(SVM), Naive Bayes, K-Nearest Neighbours, Neural

Networks and logistic regression. Also, both F1-score and

accuracy performance were measured and ANOVA was used

to test the significance. Each and every classifier was made to

run on five different datasets from NASA’s repository data

program. It was discovered that all the five models were able

to detect software defects by using software features having

comparatively high degree of certainty, but, models Support

Vector Machines (SVM) and Naïve Bayes outperformed from

the remaining models for some of the datasets. In another

paper, (Gupta et. al., 2018) discussed the prediction of design

patterns based software metrics using the supervised machine

learning algorithms i.e. Random Forest and J48. The study

used four eclipse versions Eclipse 3.2, Eclipse 3.3, Eclipse 3.6

and Eclipse 3.7 for the software metrics and software patterns.

The design patterns were predicted from the metrics and was

discovered that the algorithms gave very good perceptiveness

in the prediction of software patterns.

CHIDAMBER AND KEMERER METRICS

Software metrics are being used by the engineers to evaluate

and perform necessary features in a software project. The

software metrics control and identify the important parameters

which are affecting software development. Also, it helps in

evaluating design patterns via better platform. There are a

number of metrics used and proposed but the supreme

software metrics are used that are easy to learn, understand,

are efficient and effective. Chidamber and Kemerer metrics

are used which are specially designed keeping in mind the

object oriented code. The main objective of the Chidamber &

Kemerer metrics is to measure different object-oriented

metrics like inheritance, complexity and coupling. Chidamber

and Kemerer introduced first coupling metrics for the object-

oriented system which is known as CBO (Coupling Between

Objects), defined as a metric with number of non-inherited

related couples with the other classes. Different inheritance

metrics are also introduced like Depth of Inheritance Tree

(DIT), Number of Children (NOC) etc. The importance of

inheritance is proved which says that reduction in the amount

of the software maintenance is very necessary. Also the reuse

of inheritance is proved to be more reliable, understandable

and maintainable (Chidamber & Kemerer, 1994).

Originally six metrics were proposed by Chidamber and

Kemerer which are discussed below:

1. CBO (Coupling Between Objects)- It is defined as

the count of number of the classes which are coupled

with a certain class or method of a class accessing

the variable or object or calls the method of other

classes. Such calls had to be counted in one and the

other directions, which says that CBO of class X

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11816-11823

© Research India Publications. http://www.ripublication.com

11818

includes the size of set of classes that references class

X and those which class X references. As it is a set

therefore every class is being counted once even the

reference performs in both directions i.e. X

references Y and Y References X, then Y is counted

only once.

2. DIT (Depth of Inheritance Tree)- It is the count of

number of classes which a specific class inherits

from. Some consequences by C & K are suggested

based on DIT as it makes more difficult to predict the

behaviour of class as, the deeper the class hierarchy,

it will inherit more number of methods. Also as large

number of methods and classes are involved,

therefore deeper trees comprise significant design

complexity.

3. LCOM (Lack of Cohesion of Methods)- C & K

defined it as number of the pairs of methods which

share references to the instance variables. Each and

every pair of methods combination was assessed in

the class, and if the pair of method share references

to any of the instance variable then count is reduced

by 1 and if the pair don’t share references then it is

escalated by 1. As low the value of LCOM the better

the cohesion of the class.

4. NOC (Number of Children)- It is defined as the

number of contiguous subclass of a class by C & K.

According to C & K as the inheritance is a type of

reuse, so more the number of children, then more the

level of reuse. Also more the number of children,

more the chance of improper abstraction of parent

class. Also it might be possible for misuse of

subclassing.

5. RFC (Response for Class)- It is defined as the size

of response set of the class, and the response set is

defined as the set of methods which can be executed

in reply to the message obtained by object of the

class. As it’s a set therefore only once each method

called is counted, it doesn’t matter the number of

times it is called.

6. WMC (Weighted Methods for Class)- It is

proposed as the sum of all complexities of methods

in a class. Each method is assigned a value of one as

a complexity making WMC as equal to number of

the methods in that class, rather than using

cyclomatic complexity. The view of C & K for

WMC was that the complexity of the methods and

the number of methods involved tells the amount of

effort and time required for developing and

maintaining the class.

SOFTWARE DESIGN PATTERNS

In software engineering, design patterns are a repeatable

solution for some commonly occurring problem in the

software design. It is basically a template or a description used

for solving problems in different situations. There are 23

design patterns which can be categorized in 3 categories.

These design patterns were developed by the Gang of Four

(GoF). The Gang of Four are authors of the book ‘Design

Patterns: Elements of Reusable Object-Oriented Software’.

These authors are namely, Erich Gamma, John Vlissides,

Richard Helm and Ralph Johnson. The 3 design patterns are:

1. CREATIONAL PATTERNS- These types of

pattern provide way for creating an object while

hiding the logic of creation. These patterns provide

an interface for the creation of families of dependent

or related objects without even specifying the

concrete class. This type of pattern gives the program

more flexibility for determining which object has to

be created for the given use case. These types of

patterns are all about the class instantiation. They can

be further categorized into object-creational patterns

and class-creational patterns. The object-creational

patterns effectively use delegation to get work done

while the class-creation patterns effectively use

inheritance in instantiation process.

2. STRUCTURAL DESIGN PATTERNS- This type

of pattern is concerned with the composition of

classes and objects. In structural pattern, the interface

of a class is converted to another interface which the

client is expecting. Also concept of interface is being

used to define ways for composing objects to obtain

the new functionalities. This type of pattern uses

inheritance for composing interfaces.

3. BEHAVIORAL DESIGN PATTERNS- These

types of patterns are mainly concerned with the

communication between the objects. This pattern acts

as an interpreter i.e. when a language is given, the

representation of grammar is defined with an

interpreter which interprets the sentences in the

language by representation. It also defines common

functionality for group of classes.

EVALUATION AND DISCUSSIONS

The work is performed in various phases having different

objectives. The phases are described in detail as follows-

Phase 1: Software Metrics Data Collection

The metrics as explained is a quantitative measure of the

software characteristics and a very important depicter of the

software. They provide a very efficient and effective ground

for selecting the most appropriate and best way to save

software development money, time and effort. The metrics

used for analysis are Eclipse 3.2, 3.3 were analysed by the

Understand® software. Though many metrics were yielded

but only the object oriented metrics were selected finally. The

metrics selected were LCOM, DIT, WMC, NOC and RFC.

Once the metrics were analysed then the design patterns were

examined. The descriptive statistics of the versions of Eclipse

are shown in table 1-4.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11816-11823

© Research India Publications. http://www.ripublication.com

11819

Table 1: Eclipse 3.2

Metrics Mean
Standard

Deviation
MIN MAX

Percentile

25% 50% 75%

LCOM 31.519 42.528 0 518 11 40 68

DIT 1.9342 3.5626 0 30 5 7 12

CBO 11.126 15.012 0 266 3 6 13

NOC 0.5298 8.8074 0 964 0 0 0

RFC 42.176 93.992 0 2741 13 19 43

WMC 7.3454 19.67 0 981 1 3 8

Table 2: Eclipse 3.3

Metrics Mean
Standard

Deviation
MIN MAX

Percentile

25% 50% 75%

LCOM 30.4783 36.8532 0 100 4 12 68

DIT 0.9156 1.4531 0 10 0 0 1

CBO 10.83 14.164 0 224 3 6 13

NOC 0.5152 8.9687 0 1053 0 0 0

RFC 41.527 68.237 0 2383 13 19 41

WMC 7.1282 15.278 0 1100 1 3 8

From the tables it was observed that the value of NOC was 0

for all the classes and the value of DIT metric was 1 for all the

classes that means only 1 level of inheritance is there.

Phase 2: Software Patterns Data Collection

The software design patterns are the repeatable solutions in

the software design. They help in implementing efficient,

effective and standardized solutions to the software design.

They are also known as tested solutions for the object-oriented

problems. The patterns of the versions of Eclipse 3.2 and

Eclipse 3.3 were analysed by Web of Patterns (WOP) tool.

The patterns extracted are among those four types of design

patterns as discussed above as Creational, Structural and

Behavioral.

Table 3: Design Pattern Data Information

Source Code Pattern Participant Number of pattern

Eclipse 3.2 Singleton 5

Proxy 3

Eclipse 3.3 Adapter 51

Template 61

Singleton 29

Proxy 12

Phase 3: Experimentation Setup:

The experiments were performed by selecting a platform for

conducting machine learning algorithms. Weka was used as

the platform for the experiment. The machine learning

algorithms used were Naïve Bayes and SVM. The models for

detection of software patterns were created and examined for

the efficiency and accuracy in Weka through 10-fold cross

validation. Cross validation technique is used for evaluating

the predictive models by partitioning the main sample to

training set for training the model and testing to evaluate the

sample. In 10-fold cross validation the sample is randomly

being partitioned into 10 equal size subsamples. From these

10 subsamples, 9 subsamples are sued for training the model

while the rest 1 is used for testing the model. Then this 10-

fold validation technique is repeated 10 times having each 10

subsamples being used exactly once. After the 10 results, the

average is taken to get a single estimation.

Different performance measures were obtained for each run of

the model. Each metrics prediction model was used for

detecting design patterns in the succeeding versions of

Eclipse. The tests were performed using Naïve Bayes and

SVM with the default settings in Weka.

To detect the software design patterns-based design metrics,

the design metrics should be as accurate as possible. The

resultant design metrics prediction model has following

measures:

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11816-11823

© Research India Publications. http://www.ripublication.com

11820

Phase 4: Observations Recorded:

To detect the software design patterns-based design metrics,

the design metrics should be as accurate as possible. The

resultant design metrics prediction model has following

measures:

From Table No. 4, it can be inferred that the design metrics

prediction models created are accurate for detecting the

presence of software design patterns as well as the absence of

software design patterns. As seen from the table, the values of

precision and recall are good enough which implies that the

models are successful for detection of software design

patterns. This implies that the models used are able to detect

the design patterns accurately.

Naïve Bayes Based Design Metrics Prediction Model:

The design metrics prediction models based on Naïve Bayes

have the measures as under:

Table 4: Performance measures of the design metrics prediction models

Source Code Algorithm Precision Recall F-measure ROC

Eclipse 3.2 Naïve Bayes 0.853 0.889 0.894 0.812

Eclipse 3.3 0.877 0.892 0.902 0.806

Eclipse 3.2 SVM 0.665 0.678 0.684 0.625

Eclipse 3.3 0.689 0.695 0.702 0.640

Table 5: Performance measures of Naïve Bayes based Design Metrics Prediction model

Algorithm Prediction

Model

Applied

On
Precision Recall F-measure ROC

Naïve Bayes
Eclipse 3.2

Eclipse 3.2 0.875 0.897 0.899 0.872

Eclipse 3.3 0.688 0.694 0.691 0.498

Eclipse 3.3 Eclipse 3.3 0.991 0.994 0.991 0.906

(a) (b)

Figure 1: ROC curves on application of Naïve Bayes based metrics prediction model for detection of software design pattern in

subsequent version. (a) Eclipse 3.2 design metric prediction model. (b) Eclipse 3.3 design metric prediction model.

The value of ROC is an indication of performance of the

classifier on various versions of Eclipse. The ROC for Eclipse

3.2 comes out to be 81.2% which means very good

perceptiveness, Eclipse 3.3 ROC value is 80.6% which also

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11816-11823

© Research India Publications. http://www.ripublication.com

11821

means very good perceptiveness which implies good

perceptiveness, therefore, it shows that it is able to detect

patterns based design metrics.

SVM Based Design Metrics Prediction Model

The model SVM was also used for detection of software

design patterns based design metrics same as of the Naïve

Bayes model. The performance measures of SVM is shown in

the given Table:

Table 6: Performance measures of SVM based Design Metrics Prediction model

Algorithm
Prediction

Model
Applied On Precision Recall F-measure ROC

SVM
Eclipse 3.2

Eclipse 3.2 0.875 0.881 0.889 0.856

Eclipse 3.3 0.688 0.694 0.691 0.500

Eclipse 3.3 Eclipse 3.3 0.975 0.981 0.989 0.760

(a) (b)

Figure 2: ROC curves on application of SVM based metrics prediction model for detection of software design pattern in

subsequent version. (a) Eclipse 3.2 design metric prediction model. (b) Eclipse 3.3 design metric prediction model.

The value of ROC is an indication of performance of the

classifier on various versions of Eclipse. The ROC for Eclipse

3.2 comes out to be 62.5% which means average

perceptiveness, Eclipse 3.3 ROC value is 64.0% which also

means average perceptiveness, which implies that it gives

average perceptiveness and therefore, it shows that it is able to

detect patterns based design metrics.

CONCLUSION

In this paper, various Chidamber and Kemerer metrics were

discussed which are very useful in software engineering. the 3

types of software patterns were also discussed i.e. creational,

structural and behavioral. some tools were already been used

for the analysis of software patterns like JHotDraw 7 and

JDeodrant on different versions of the software. The results

surely depict that the design metrics plays an important role in

predicting the software design patterns. The algorithms used

are Naive Bayes and SVM and they were able to predict the

patterns from the software metrics and the algorithm Naïve

Bayes gave very good perceptiveness while the algorithm

SVM gave an average of perceptiveness. The study used the

two types of classification algorithms but for future work the

various other regression algorithm or the other unsupervised

algorithms can also be used for the prediction of software

design patterns. also, some other tools can also be used for

analysing the software metrics and software patterns.

REFERENCES

[1]. Ackerman. L and Gonzalez. C, (2011) The value of

pattern implementations’, The World of Software

Development Journal, Computer Science. Vol.32

Issue. 6, pp. 28-32.

[2]. Al-Ja’afer, J., & Sabri, K. (2004). Chidamber-

Kemerer (CK) and Lorenze-Kidd (LK) metrics to

assess Java programs. King Abdullah II school for

information technology, University of Jordan,

Jordan.

[3]. Anvik, J. (2007). Assisting bug report triage through

recommendation (Doctoral dissertation, University of

British Columbia).

[4]. Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A

validation of object-oriented design metrics as

quality indicators. IEEE Transactions on software

engineering, 22(10), 751-761.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11816-11823

© Research India Publications. http://www.ripublication.com

11822

[5]. Bhargava, N., Sharma, G., Bhargava, R., &

Mathuria, M. (2013). Decision tree analysis on j48

algorithm for data mining. Proceedings of

International Journal of Advanced Research in

Computer Science and Software Engineering, 3(6).

[6]. Challagulla, V. U. B., Bastani, F. B., Yen, I. L., &

Paul, R. A. (2008). Empirical assessment of machine

learning based software defect prediction techniques.

International Journal on Artificial Intelligence Tools,

17(02), 389-400.

[7]. Chang, C. P., Chu, C. P., & Yeh, Y. F. (2009).

Integrating in-process software defect prediction with

association mining to discover defect pattern.

Information and software technology, 51(2), 375-

384.

[8]. Chaurasia, V., & Pal, S. (2014). Data mining

approach to detect heart diseases.

[9]. Cheikhi, L., Al-Qutaish, R. E., Idri, A., & Sellami, A.

(2014). Chidamber and kemerer object-oriented

measures: Analysis of their design from the

metrology perspective. International Journal of

Software Engineering & Its Applications, 8(2), 359-

374.

[10]. Chidamber, S. R., Darcy, D. P., & Kemerer, C. F.

(1998). Managerial use of metrics for object-oriented

software: An exploratory analysis. IEEE

Transactions on software Engineering, 24(8), 629-

639.

[11]. Chidamber, S. R., & Kemerer, C. F. (1994). A

metrics suite for object oriented design. IEEE

Transactions on software engineering, 20(6), 476-

493.

[12]. Cline, M. P. (1996). The pros and cons of adopting

and applying design patterns in the real world.

Communications of the ACM, 39(10), 47-49.

[13]. D'Ambros, M., Lanza, M., & Robbes, R. (2010,

May). An extensive comparison of bug prediction

approaches. In Mining Software Repositories (MSR),

2010 7th IEEE Working Conference on (pp. 31-41).

IEEE.

[14]. D’Ambros, M., Lanza, M., & Robbes, R. (2012).

Evaluating defect prediction approaches: a

benchmark and an extensive comparison. Empirical

Software Engineering, 17(4-5), 531-577.

[15]. Dickinson, W., Leon, D., & Podgurski, A. (2001,

July). Finding failures by cluster analysis of

execution profiles. In Proceedings of the 23rd

international conference on Software engineering

(pp. 339-348). IEEE Computer Society.

[16]. Fowler. M, ‘Patterns’ (2003), IEEE software,

20(2).Retrieved May 8, 2011 from Fowler On

Patterns.

[17]. Gamma, E. (1995). Design patterns: elements of

reusable object-oriented software. Pearson Education

India.

[18]. Goel, B. M., & Bhatia, P. K. (2012). Analysis of

reusability of object-oriented system using CK

metrics. International Journal of Computer

Applications, 60(10).

[19]. Hampherey Watts S.(1995) A discipline for software

Engineering reading, Ma,Addison Wesley.

[20]. Hegedűs, P., Bán, D., Ferenc, R., & Gyimóthy, T.

(2012). Myth or reality? analyzing the effect of

design patterns on software maintainability. In

Computer Applications for Software Engineering,

Disaster Recovery, and Business Continuity (pp.

138-145). Springer, Berlin, Heidelberg.

[21]. Jiang, S., & Mu, H. (2011, July). Design patterns in

object oriented analysis and design. In Software

Engineering and Service Science (ICSESS), 2011

IEEE 2nd International Conference on (pp. 326-329).

IEEE.

[22]. Kalmegh, S. R. (2015). Comparative analysis of

weka data mining algorithm randomforest,

randomtree and ladtree for classification of

indigenous news data. International Journal of

Emerging Technology and Advanced Engineering,

5(1), 507-517.

[23]. Lovedeep and Varinder Kaur Arti (2014) Application

of Data mining techniques in software engineering

International journal of electrical, electronics and

computer system(IJEECS) Volume-2 issue-5, 6.

[24]. Malhotra, R., & Jain, A. (2012). Fault prediction

using statistical and machine learning methods for

improving software quality. Journal of Information

Processing Systems, 8(2), 241-262.

[25]. Okutan, A., & Yıldız, O. T. (2014). Software defect

prediction using Bayesian networks. Empirical

Software Engineering, 19(1), 154-181.

[26]. Olague, H. M., Etzkorn, L. H., Gholston, S., &

Quattlebaum, S. (2007). Empirical validation of three

software metrics suites to predict fault-proneness of

object-oriented classes developed using highly

iterative or agile software development processes.

IEEE Transactions on software Engineering, 33(6),

402-419.

[27]. Pal, A. K., & Pal, S. (2013). Analysis and mining of

educational data for predicting the performance of

students. International Journal of Electronics

Communication and Computer Engineering, 4(5),

1560-1565.

[28]. Perreault, L., Berardinelli, S., Izurieta, C., &

Sheppard, J. (2017). Using Classifiers for Software

Defect Detection. In 26th International Conference

on Software Engineering and Data Engineering,

SEDE (pp. 2-4).

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 11816-11823

© Research India Publications. http://www.ripublication.com

11823

[29]. Qureshi, M., & Qureshi, W. (2012). Evaluation of

the design metric to reduce the number of defects in

software development. arXiv preprint

arXiv:1204.4909.

[30]. SAHIB. (2014). Final Report On Defect Prediction

Model of Static Code Features for Cross-Company

and Cross-Project Software.

[31]. Seliya, N., & Khoshgoftaar, T. M. (2007). Software

quality analysis of unlabeled program modules with

semisupervised clustering. IEEE Transactions on

Systems, Man, and Cybernetics-Part A: Systems and

Humans, 37(2), 201-211.

[32]. Suresh, Y., Pati, J., & Rath, S. K. (2012).

Effectiveness of software metrics for object-oriented

system. Procedia Technology, 6, 420-427.

[33]. Uchiyama, S., Washizaki, H., Fukazawa, Y., &

Kubo, A. (2011, March). Design pattern detection

using software metrics and machine learning. In First

International Workshop on Model-Driven Software

Migration (MDSM 2011) (p. 38).

[34]. Yu, P., Systa, T., & Muller, H. (2002). Predicting

fault-proneness using OO metrics. An industrial case

study. In Software Maintenance and Reengineering,

2002. Proceedings. Sixth European Conference on

(pp. 99-107). IEEE.

[35]. Zakariah, M. (2014). Classification of large datasets

using Random Forest Algorithm in various

applications: Survey. money, 4(3), 189-198.

