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Abstract 

Software engineering has become very important for the 

technology. It includes the study and application of the 

engineering in designing, developing and maintaining the 

software. The aim of software engineering is to produce 

quality software to be delivered on time keeping it within 

budget which satisfies the requirement. The patterns can be 

detected by code inspections, automatic techniques, dynamic 

techniques such as testing and assertions, using machine 

learning and by static techniques. These design patterns can 

be detected from the design metrics using machine learning 

algorithms This study emphasis on detecting software design 

pattern-based design metrics using machine learning 

algorithm. The results surely depict that the design metrics 

plays an important role in predicting the software design 

patterns. The algorithms used are Naive Bayes and SVM and 

they were able to predict the patterns from the software 

metrics and gave good perceptiveness. 

Keywords: Naïve Bayes, Design Patterns, SVM, Machine 

learning, Software engineering, Coupling  

 

INTRODUCTION  

In context to software engineering, the software quality 

computes that how the software will be designed and also how 

the software conforms for that design. The software quality 

has been upgraded from past few three decades. The reason 

possible behind this is that the companies have started using 

new technologies and techniques in the software 

developmental process like CASE tools or object-oriented 

models etc. All the aspects of the software quality are 

interconnected and can have impact on others as well, the 

impact can be negative or positive. The main reason for 

involving software quality in software development is to get 

the final product built as per the requirements specified. As in 

today’s world, software engineering has become very 

important for the technology. It includes the study and 

application of the engineering in designing, developing and 

maintaining the software. The aim of software engineering is 

to produce quality software to be delivered on time keeping it 

within budget which satisfies the requirement. It has a wide 

range of applications in every field like in business software, 

used for management and controlling of financial activities, in 

artificial intelligence it is used for problem- solving 

techniques, in web-based software used as an interface.  

Software pattern detection is an important part in the software 

development process. Pattern detection can be made by 

various methods using different types of algorithms. There are 

many studies that can be done using the software metrics. One 

of them includes the detection of software patterns. Patterns 

can be detected using manual and automatic approaches 

where automatic method include Machine Learning 

algorithms. The software patterns can also be detected using 

software metrics. Supervised learning is being implemented 

for detecting of software patterns from the software design 

metrics. The software design metrics can be found by using 

some software which will then be treated as an input to the 

algorithm for detecting the software patterns. At the end, the 

design pattern prediction model will be proposed from the 

software metrics. Some studies are done on the design 

patterns and design metrics. 

 

LITERATURE REVIEW 

(Chidamber et. al. 1994), developed six design metrics namely 

WMC, DIT, CBO, LCOM, NOC and RFC. These design 

metrics were evaluated analytically against another author 

Weyukar, who proposed a set of the measurement principles. 

Also a tool was developed for automatic data collection for 

collecting data of these metrics at the two field sites for 

examining the feasibility. The C&K metrics have some 

limitations that it doesn’t account for the complexity which 

arises from polymorphism and encapsulation, which was 

further studied by (Li et. al. 1993), in which Li studied two 

more commercial systems. Out of total six metrics by C&K, 

five of them namely LCOM, RFC, DIT, WMC and NOC 

helped in predicting the maintenance effort. Still many 

researchers kept on proposing modifications on the metrics 

like (Basili et. al. 1996), studied student projects and found 

that WMC was correlated with the defects while LCOM was 

not. Also, Basili studied that CBO, RFC, DIT and NOC were 

also correlated. (Uchiyama et. al. 2011) proposed a pattern 

detection technique using the software metrics and some 

machine learning methods. In their technique, it judges 

candidate for the role which compose the design patterns by 

using the machine learning and measurement of metrics. It 

distinguishes the design patterns where the class structure are 

similar and also suppresses the false negatives. It was proved 

that this technique is better than the old techniques. (Malhotra 

et. al. 2012) discussed the relationship between fault 

proneness and object oriented metrics using logistic regression 

algorithm. Performance of the predicted models is evaluated 

using Receiver Operating Characteristic (ROC) Analysis. In 

other discussion, study used a statistical model which was 

derived from logistic regression to calculate the threshold 

values of Kemerer, object oriented and Chidamber metrics. 
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Threshold effects at the various risk levels was calculated 

using the threshold values and he has also validated the use of 

these threshold values on public domain, dataset, KC1 from 

NASA and 2 open source promise datasets i.e. JEdit and IVY 

using various data mining classifiers and machine learning 

algorithms. Three different open source datasets i.e. Tomcat, 

Sakura and Ant were used to perform inter project validation. 

And the results depicted that proposed threshold methodology 

performs well on the project having same or similar 

characteristics. 

(Okutan et. al. 2012) used Bayesian networks for determining 

the probabilistic influential relationships between defect 

proneness and software metrics. Other two metrics i.e. source 

code quality (LOCQ) and number of developers (NOD) were 

also used with the metrics already present in Promise Data 

Repository. In total of 9 data sets of open source Promise Data 

Repository were used. Using these metrics and datasets it was 

found that response for class (RFC), lack of coding quality 

(LOCQ) and lines of code (LOC) were the most effective 

metrics while weighted method per class (WMC), lack of 

cohesion methods (LCOM) and coupling objects (CBO) were 

less effective metrics on the defect proneness. (Patil et. al. 

2013), discussed the performance based on the incorrect and 

correct instances of the data classification using J48 and Naïve 

Bayes algorithms. The algorithms are used to compare and 

evaluate the bank dataset and to maximize the true positive 

rates while minimizing the false positive rates using the 

WEKA tool. After experimentation it was concluded that 

Naïve Bayes generated 184 correct instances while J48 

generated 203 correct instances. Random Forest is widely 

used in various fields and have various applications, it is a 

group of classification algorithms, it is especially used with 

larger datasets due to some of its best features such as OOB 

error detection, Variable Importance measure and Proximity 

(Zakariah, 2014). The paper also discusses many applications 

of the Random Forest for classification of the dataset such as 

Gene Classification, Network intrusion detection, Email spam 

detection, Credit Card fraud detection and Text classification. 

This paper focuses on use of the Random Forest features in 

the applications like for selection of the required gene among 

the genes, variable importance measure can be used which 

helps in removing the less significant gene, and for detection 

of the intrusion the outlier property of Random Forest is used. 

In another paper, (Yadav et. al. 2015) integrated 3 classifiers 

with simple k-means clustering algorithm while the 

integration was applied on the bug data set. It was concluded 

that k-means & Bayes net gives 0.0012 RMSE and 0.0002 

MAE error and also it took less time to build. At the end out 

of k-means & J48, k-means & Decision tree and k-means & 

Bayes net, it was founded that k-means & Bayes net is the 

best algorithm integration. (Arnu et. al. 2016), a meta-analysis 

was conducted of 2001-2015 papers found where the novel 

Random Forest algorithm was proposed and is then compared 

to already proposed Random Forest algorithm. Many 

limitations were studied like based on performance measures, 

the estimation way of these measures and the methodology for 

comparing the algorithms. And it was found that almost one-

third of results from the Random Forest papers, improvement 

was not found in the performance when comparisons were 

drawn using statistical tests.  

Classifier models work by the learning patterns between 

corresponding binary label and attributes of the software 

which indicates whether a defect exists or not (Perreault et. 

al., 2017). In the study, the performance of five different 

classifiers were evaluated like Support Vector Machines 

(SVM), Naive Bayes, K-Nearest Neighbours, Neural 

Networks and logistic regression. Also, both F1-score and 

accuracy performance were measured and ANOVA was used 

to test the significance. Each and every classifier was made to 

run on five different datasets from NASA’s repository data 

program. It was discovered that all the five models were able 

to detect software defects by using software features having 

comparatively high degree of certainty, but, models Support 

Vector Machines (SVM) and Naïve Bayes outperformed from 

the remaining models for some of the datasets. In another 

paper, (Gupta et. al., 2018) discussed the prediction of design 

patterns based software metrics using the supervised machine 

learning algorithms i.e. Random Forest and J48. The study 

used four eclipse versions Eclipse 3.2, Eclipse 3.3, Eclipse 3.6 

and Eclipse 3.7 for the software metrics and software patterns. 

The design patterns were predicted from the metrics and was 

discovered that the algorithms gave very good perceptiveness 

in the prediction of software patterns.   

 

CHIDAMBER AND KEMERER METRICS 

Software metrics are being used by the engineers to evaluate 

and perform necessary features in a software project. The 

software metrics control and identify the important parameters 

which are affecting software development. Also, it helps in 

evaluating design patterns via better platform. There are a 

number of metrics used and proposed but the supreme 

software metrics are used that are easy to learn, understand, 

are efficient and effective. Chidamber and Kemerer metrics 

are used which are specially designed keeping in mind the 

object oriented code. The main objective of the Chidamber & 

Kemerer metrics is to measure different object-oriented 

metrics like inheritance, complexity and coupling. Chidamber 

and Kemerer introduced first coupling metrics for the object-

oriented system which is known as CBO (Coupling Between 

Objects), defined as a metric with number of non-inherited 

related couples with the other classes. Different inheritance 

metrics are also introduced like Depth of Inheritance Tree 

(DIT), Number of Children (NOC) etc. The importance of 

inheritance is proved which says that reduction in the amount 

of the software maintenance is very necessary. Also the reuse 

of inheritance is proved to be more reliable, understandable 

and maintainable (Chidamber & Kemerer, 1994). 

Originally six metrics were proposed by Chidamber and 

Kemerer which are discussed below:  

1. CBO (Coupling Between Objects)- It is defined as 

the count of number of the classes which are coupled 

with a certain class or method of a class accessing 

the variable or object or calls the method of other 

classes. Such calls had to be counted in one and the 

other directions, which says that CBO of class X 
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includes the size of set of classes that references class 

X and those which class X references. As it is a set 

therefore every class is being counted once even the 

reference performs in both directions i.e. X 

references Y and Y References X, then Y is counted 

only once. 

2. DIT (Depth of Inheritance Tree)- It is the count of 

number of classes which a specific class inherits 

from. Some consequences by C & K are suggested 

based on DIT as it makes more difficult to predict the 

behaviour of class as, the deeper the class hierarchy, 

it will inherit more number of methods. Also as large 

number of methods and classes are involved, 

therefore deeper trees comprise significant design 

complexity. 

3. LCOM (Lack of Cohesion of Methods)-  C & K 

defined it as number of the pairs of methods which 

share references to the instance variables. Each and 

every pair of methods combination was assessed in 

the class, and if the pair of method share references 

to any of the instance variable then count is reduced 

by 1 and if the pair don’t share references then it is 

escalated by 1. As low the value of LCOM the better 

the cohesion of the class.  

4. NOC (Number of Children)- It is defined as the 

number of contiguous subclass of a class by C & K. 

According to C & K as the inheritance is a type of 

reuse, so more the number of children, then more the 

level of reuse. Also more the number of children, 

more the chance of improper abstraction of parent 

class. Also it might be possible for misuse of 

subclassing. 

5. RFC (Response for Class)- It is defined as the size 

of response set of the class, and the response set is 

defined as the set of methods which can be executed 

in reply to the message obtained by object of the 

class. As it’s a set therefore only once each method 

called is counted, it doesn’t matter the number of 

times it is called. 

6. WMC (Weighted Methods for Class)- It is 

proposed as the sum of all complexities of methods 

in a class. Each method is assigned a value of one as 

a complexity making WMC as equal to number of 

the methods in that class, rather than using 

cyclomatic complexity. The view of C & K for 

WMC was that the complexity of the methods and 

the number of methods involved tells the amount of 

effort and time required for developing and 

maintaining the class. 

 

SOFTWARE DESIGN PATTERNS 

In software engineering, design patterns are a repeatable 

solution for some commonly occurring problem in the 

software design. It is basically a template or a description used 

for solving problems in different situations. There are 23 

design patterns which can be categorized in 3 categories. 

These design patterns were developed by the Gang of Four 

(GoF). The Gang of Four are authors of the book ‘Design 

Patterns: Elements of Reusable Object-Oriented Software’. 

These authors are namely, Erich Gamma, John Vlissides, 

Richard Helm and Ralph Johnson. The 3 design patterns are: 

1. CREATIONAL PATTERNS- These types of 

pattern provide way for creating an object while 

hiding the logic of creation. These patterns provide 

an interface for the creation of families of dependent 

or related objects without even specifying the 

concrete class. This type of pattern gives the program 

more flexibility for determining which object has to 

be created for the given use case. These types of 

patterns are all about the class instantiation. They can 

be further categorized into object-creational patterns 

and class-creational patterns. The object-creational 

patterns effectively use delegation to get work done 

while the class-creation patterns effectively use 

inheritance in instantiation process. 

2. STRUCTURAL DESIGN PATTERNS- This type 

of pattern is concerned with the composition of 

classes and objects. In structural pattern, the interface 

of a class is converted to another interface which the 

client is expecting. Also concept of interface is being 

used to define ways for composing objects to obtain 

the new functionalities. This type of pattern uses 

inheritance for composing interfaces. 

3. BEHAVIORAL DESIGN PATTERNS- These 

types of patterns are mainly concerned with the 

communication between the objects. This pattern acts 

as an interpreter i.e. when a language is given, the 

representation of grammar is defined with an 

interpreter which interprets the sentences in the 

language by representation. It also defines common 

functionality for group of classes. 

 

EVALUATION AND DISCUSSIONS  

The work is performed in various phases having different 

objectives. The phases are described in detail as follows-  

Phase 1: Software Metrics Data Collection 

The metrics as explained is a quantitative measure of the 

software characteristics and a very important depicter of the 

software. They provide a very efficient and effective ground 

for selecting the most appropriate and best way to save 

software development money, time and effort. The metrics 

used for analysis are Eclipse 3.2, 3.3 were analysed by the 

Understand® software. Though many metrics were yielded 

but only the object oriented metrics were selected finally. The 

metrics selected were LCOM, DIT, WMC, NOC and RFC. 

Once the metrics were analysed then the design patterns were 

examined. The descriptive statistics of the versions of Eclipse 

are shown in table 1-4. 
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Table 1: Eclipse 3.2 

Metrics Mean 
Standard 

Deviation 
MIN MAX 

Percentile 

25% 50% 75% 

LCOM 31.519 42.528 0 518 11 40 68 

DIT 1.9342 3.5626 0 30 5 7 12 

CBO 11.126 15.012 0 266 3 6 13 

NOC 0.5298 8.8074 0 964 0 0 0 

RFC 42.176 93.992 0 2741 13 19 43 

WMC 7.3454 19.67 0 981 1 3 8 

 

Table 2: Eclipse 3.3 

Metrics Mean 
Standard 

Deviation 
MIN MAX 

Percentile 

25% 50% 75% 

LCOM 30.4783 36.8532 0 100 4 12 68 

DIT 0.9156 1.4531 0 10 0 0 1 

CBO 10.83 14.164 0 224 3 6 13 

NOC 0.5152 8.9687 0 1053 0 0 0 

RFC 41.527 68.237 0 2383 13 19 41 

WMC 7.1282 15.278 0 1100 1 3 8 

 

From the tables it was observed that the value of NOC was 0 

for all the classes and the value of DIT metric was 1 for all the 

classes that means only 1 level of inheritance is there. 

 

Phase 2: Software Patterns Data Collection 

The software design patterns are the repeatable solutions in 

the software design. They help in implementing efficient, 

effective and standardized solutions to the software design. 

They are also known as tested solutions for the object-oriented 

problems. The patterns of the versions of Eclipse 3.2 and 

Eclipse 3.3 were analysed by Web of Patterns (WOP) tool. 

The patterns extracted are among those four types of design 

patterns as discussed above as Creational, Structural and 

Behavioral. 

 

Table 3: Design Pattern Data Information 

Source Code Pattern Participant Number of pattern 

Eclipse 3.2 Singleton 5 

Proxy 3 

Eclipse 3.3 Adapter 51 

Template 61 

Singleton 29 

Proxy 12 

 

Phase 3: Experimentation Setup: 

The experiments were performed by selecting a platform for 

conducting machine learning algorithms. Weka was used as 

the platform for the experiment. The machine learning 

algorithms used were Naïve Bayes and SVM. The models for 

detection of software patterns were created and examined for 

the efficiency and accuracy in Weka through 10-fold cross 

validation. Cross validation technique is used for evaluating 

the predictive models by partitioning the main sample to 

training set for training the model and testing to evaluate the 

sample. In 10-fold cross validation the sample is randomly 

being partitioned into 10 equal size subsamples. From these 

10 subsamples, 9 subsamples are sued for training the model 

while the rest 1 is used for testing the model. Then this 10-

fold validation technique is repeated 10 times having each 10 

subsamples being used exactly once. After the 10 results, the 

average is taken to get a single estimation.  

Different performance measures were obtained for each run of 

the model. Each metrics prediction model was used for 

detecting design patterns in the succeeding versions of 

Eclipse. The tests were performed using Naïve Bayes and 

SVM with the default settings in Weka.  

To detect the software design patterns-based design metrics, 

the design metrics should be as accurate as possible. The 

resultant design metrics prediction model has following 

measures: 
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Phase 4: Observations Recorded: 

To detect the software design patterns-based design metrics, 

the design metrics should be as accurate as possible. The 

resultant design metrics prediction model has following 

measures: 

From Table No. 4, it can be inferred that the design metrics 

prediction models created are accurate for detecting the 

presence of software design patterns as well as the absence of 

software design patterns. As seen from the table, the values of 

precision and recall are good enough which implies that the 

models are successful for detection of software design 

patterns. This implies that the models used are able to detect 

the design patterns accurately. 

 

Naïve Bayes Based Design Metrics Prediction Model:  

The design metrics prediction models based on Naïve Bayes 

have the measures as under: 

 

Table 4: Performance measures of the design metrics prediction models 

Source Code Algorithm Precision Recall F-measure ROC 

Eclipse 3.2 Naïve Bayes 0.853 0.889 0.894 0.812 

Eclipse 3.3 0.877 0.892 0.902 0.806 

Eclipse 3.2 SVM 0.665 0.678 0.684 0.625 

Eclipse 3.3 0.689 0.695 0.702 0.640 

 

Table 5: Performance measures of Naïve Bayes based Design Metrics Prediction model 

Algorithm Prediction 

Model 

Applied 

On 
Precision Recall F-measure ROC 

Naïve Bayes 
Eclipse 3.2 

Eclipse 3.2 0.875 0.897 0.899 0.872 

Eclipse 3.3 0.688 0.694 0.691 0.498 

Eclipse 3.3 Eclipse 3.3 0.991 0.994 0.991 0.906 

 

               

(a)                                                             (b) 

Figure 1: ROC curves on application of Naïve Bayes based metrics prediction model for detection of software design pattern in 

subsequent version. (a) Eclipse 3.2 design metric prediction model. (b) Eclipse 3.3 design metric prediction model. 

 

 

 

 

 

The value of ROC is an indication of performance of the 

classifier on various versions of Eclipse. The ROC for Eclipse 

3.2 comes out to be 81.2% which means very good 

perceptiveness, Eclipse 3.3 ROC value is 80.6% which also 
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means very good perceptiveness which implies good 

perceptiveness, therefore, it shows that it is able to detect 

patterns based design metrics.  

 

SVM Based Design Metrics Prediction Model 

The model SVM was also used for detection of software 

design patterns based design metrics same as of the Naïve 

Bayes model. The performance measures of SVM is shown in 

the given Table: 

 

Table 6: Performance measures of SVM based Design Metrics Prediction model 

Algorithm 
Prediction 

Model 
Applied On Precision Recall F-measure ROC 

SVM 
Eclipse 3.2 

Eclipse 3.2 0.875 0.881 0.889 0.856 

Eclipse 3.3 0.688 0.694 0.691 0.500 

Eclipse 3.3 Eclipse 3.3 0.975 0.981 0.989 0.760 

 

           

(a)                                                             (b) 

Figure 2: ROC curves on application of SVM based metrics prediction model for detection of software design pattern in 

subsequent version. (a) Eclipse 3.2 design metric prediction model. (b) Eclipse 3.3 design metric prediction model. 

 

The value of ROC is an indication of performance of the 

classifier on various versions of Eclipse. The ROC for Eclipse 

3.2 comes out to be 62.5% which means average 

perceptiveness, Eclipse 3.3 ROC value is 64.0% which also 

means average perceptiveness, which implies that it gives 

average perceptiveness and therefore, it shows that it is able to 

detect patterns based design metrics.  

 

CONCLUSION  

In this paper, various Chidamber and Kemerer metrics were 

discussed which are very useful in software engineering. the 3 

types of software patterns were also discussed i.e. creational, 

structural and behavioral. some tools were already been used 

for the analysis of software patterns like JHotDraw 7 and 

JDeodrant on different versions of the software. The results 

surely depict that the design metrics plays an important role in 

predicting the software design patterns. The algorithms used 

are Naive Bayes and SVM and they were able to predict the 

patterns from the software metrics and the algorithm Naïve 

Bayes gave very good perceptiveness while the algorithm 

SVM gave an average of perceptiveness. The study used the 

two types of classification algorithms but for future work the 

various other regression algorithm or the other unsupervised 

algorithms can also be used for the prediction of software 

design patterns. also, some other tools can also be used for 

analysing the software metrics and software patterns. 
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