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Abstract

The performance of radar detection systems is affected by the
presence of multiple interfering targets and/or clutter edges.
In this paper, we propose an adaptive Constant False Alarm
Rate (CFAR) detector for heterogeneous (hon homogeneous)
environments. The proposed Adaptive Cell Averaging
Detector or ACAD-CFAR, uses an automatic cell by cell
censoring technique to reject dynamically the unwanted
echoes. In fact, the problem of target detection resides in the
estimation of the transitions in the reference window. Also,
the presence of unwanted irregularities in the considered
reference canal increases the detection threshold. The
suggested detector, which does not require any prior
information about the observed background, provides a good
detection of the unknown transitions and protects perfectly its
adaptive threshold against the presence of undesired echoes.
Depending on the obtained transitions, the proposed scheme
follows a strategy to output its detection decision by using an
IID (Independent and Identically Distributed) conversion.
Monte-Carlo simulated results, under the assumption of
Gaussian clutter and mono pulse treatment, show that the
addressed CA- based processing performs like the
conventional CA-CFAR (Cell Averaging-) detector in the
homogeneous situation and exhibits good performance in non
homogeneous environments caused by the presence of
multiple secondary targets and/or clutter edges.

Keywords: Adaptive CFAR detection; automatic censoring;
heterogeneous environments; probability of detection;
probability of false alarm.

INTRODUCTION

In radar signal processing literature, many CFAR detectors
have been designed in order to optimize the probability of
detection (Pd) under the assumption of a constant probability
of false alarm (Pfa), (Neyman- Pearson criterion). The first
detector is the well known CA-CFAR (Cell Averaging-) [1].
Its estimator of the background is obtained by summing all
the received data. This processor performs optimally in a
homogeneous Gaussian environment where the samples are
assumed IID. Conversely, if the 1ID hypothesis is not
verified, it suffers from considerable loss in their performance
[2]. To circumvent this difficulty, the GO-CFAR (Greatest
Of-) [3] and then the SO-CFAR (Smallest Of-) [4] have been
proposed. Their estimators are taken by the maximum and the
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minimum sums of the halves of the received data,
respectively. Nevertheless, the Pd of GO- decreases
intolerably when interfering targets appear in the reference
canal and the SO- fails to maintain a constant Pfa at clutter
edges [5].

To give other solutions, Order Statistics-based CFAR
detectors using fixed censoring points have been proposed. In
[6], the CMLD- (Censored Mean Level Detector-) was
introduced in which the higher powered ordered samples are
censored and then uses the remaining cells to estimate the
noise level. Also, the OS- (Ordered Statistics-) [7] which
selects one ranked sample to obtain its estimator. Whereas,
the TM-CFAR(Trimmed Mean-) [2], is considered as a
generalization of the CMLD- and OS-CFAR schemes. It
eliminates the lower and the higher ordered cells and then
estimates the background level by summing the rested cells.
In fact, the cited detectors perform well in a specific
conditions and need some a priori knowledge about the
environment in order to discard the unwanted samples.
However, if this information is not provided a considerable
degradation in performance is remarked.

To enhance the performance in the above expected situation,
a lot of automatic censoring techniques have been designed
by dynamically determining their adaptive censoring points.
In [8], the ACMLD- (Automatic CMLD-) and the GTL-
CMLD- (Generalized Two Level- CMLD-) processors, which
based on the same cell-by-cell procedure for discarding the
unwanted samples, are introduced. In [9], the authors
proposed the VI- (Variability Index-) which switches
automatically to the CA-, GO-, or SO- CFAR's. Another
switching of the VI- to the OS- is introduced in [10] to
improve the performance when the outliers are located in
both the halves of the reference window. The listed adaptive-
thresholdings perform well in multiple targets or in clutter
edges, whereas, the performance is degraded in the presence
of both outliers simultaneously.

Recently, some adaptive CFAR detectors are designed to
perform well in the case of heterogeneities caused by the
multiple interfering targets and/or clutter boundaries. In [11],
the ADCCA- (Automatic Dual Censoring Cell Averaging-)
detector was proposed. It uses two adaptive thresholds and
utilizes the fuzzy membership function to eliminate the
undesired samples. In [12], the author proposed the GGDC-
(Goodness-of-fit Generalized likelihood test with Dual
Censoring-). This processor exploits a goodness-of-fit and a
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generalized likelihood ratio algorithms to test the
homogeneous and the clutter edges situations, respectively,
and then selects the ADCCA algorithm to perform goodly in
multiple interferences. Another Automatic Censoring- CFAR
(AC-) which switches dynamically to the CA-, CMLD- and
TM- detectors is introduced in [13]. In addition, a new class
of adaptive CFAR methods is presented in [14]. The authors
analyzed also, in [14], the performance of one of the possible
implementations of the considered class. It is the OFPI-
CFAR (Outlier Free Positions Identification-). In the same
subject, the researchers proposed other systems as in [15, 16,
17, 18]. In this work, we consider the problem of target
detection with unknown transitions and unknown number-
power of the unwanted echoes. We propose an Adaptive Cell
Averaging Detector- (ACAD-CFAR) which assess its
detection decision in heterogeneous Gaussian environment
with mono pulse processing. Under the absence of any prior
information about the background, the proposed detector uses
an automatic censoring cell-by-cell procedure for detecting
the transitions in the reference window and then discards
dynamically the unwanted echoes. Depending on the
estimated transitions, it follows a strategy to give its detection
decision by using an IID conversion. The results show that
the suggested CA-based processor performs like the CA- in a
homogeneous background and exhibits good performance in
the presence of multiple interfering targets and/or clutter
boundaries.

The paper is organized as follows. Section 2 is devoted to
the discussion of the basic assumptions in a general CFAR
detection and formulation of the problem. The description of
the censoring procedure and the strategy of decision are
illustrated in section 3. Results and discussions using Monte-
Carlo simulations are considered in section 4. Finally, our
conclusions with suggestions for future works are provided
in section 5.

BASIC ASSUMPTIONS AND PROBLEM
FORMULATION

In a general CFAR processor, the received data, outputs of
the square-law (SL) device, are sent serially into a tapped
delay line of length N+1, (Fig. 1). The N+1 rang bins
correspond to the N reference cells, X, I=1,...,N, surrounding
the cell under test (CUT) Xo. In this cell, the primary target
under investigation, of power SNR (Signal to Noise Ratio),
can be presented. The range cells are combined to yield an
estimation of the background Z. The sample of X is then
compared to the threshold TZ according to the test of
detection [1],
H1
TZ

>
Xo
<H

)

0

the threshold multiplier T is fixed to maintain a constant Pfa
at a desired value. Hypotheses H; and Ho denote the presence
and the absence of a target, respectively.
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Under the assumption of homogeneous Gaussian background
and mono pulse processing, the samples in the reference
window are 11D processes and exponentially distributed [1].
That is, the probability density function (PDF) of the output
of the 1" cell is given by [1]

f (X) == exp(—) )
# n

where p denotes the scale parameter of the total noise power.
The value of y depends on the content of the observed data.
When the I™ reference cell contains an interfering target of
SWII (SWERLING Il ) model [19], p may be written as
Mi(1+INR), where INR is an Interference- to- Noise Ratio.
Also, if some cells are embedded in clutter region, u may be
written as W (L+CNR), where CNR is a Clutter- to- Noise
Ratio. For the presence of both outliers, M =W
(1+INR+CNR). If INR=0 and CNR=0, this corresponds to
the homogeneous situation with p = W, where ; is the
thermal noise power (normalized to unity). The background
estimator obtained by summing N reference cells 1ID and
exponentially distributed follows Gamma law [20] with
parameters (N, L)

Z(N—l) i
fo(Z2)=—F.exp(——
2(Z) (N p( ﬂ)
where I" is the Gamma function. If the reference cells are
ranked in ascending order according to their magnitudes,

we obtain:

@)

X(1)< X(2)<...< X(N) 4

These ordered samples, X(I) 1=1,...,N, are not IID and their
PDF is given by [21]

01| ) |a-ea(-x
exp(—(N-1+1)X)

Q)

To turn back to the IID characteristic, it is demonstrated in
[21] that the random variables Y, , 1=1,...,N, defined by
equation (6), are 11D and also exponentially distributed.

(6)

The basic idea of the proposed detector is to find the adaptive
homogeneous window (AHW) composed of ordered data and
represents the uniform segment around the CUT. Based on
the optimality of the CA-CFAR under the 11D assumption, the
proposed detector is switched to an CA(N-i) by converting
the ordered data of the AHW to IID samples, where T is the
estimated number of censored cells. The automatic censoring
algorithm is then selected. In order to estimate the unknown
transitions (ki and k») edges of AHW, an iterative cell-by-cell
tests are used, according to the algorithm, and consequently
outputs the number 7. Note that, the proposed algorithm is
associated to a look-up table of scaling factors, Tc;, j=1, ...,
N-1. These factors are used to achieve a design probability of
false censoring (Pfc), see Fig. 1.

Y, =(N=1+1)(X(1)=X(1-1)), X(0)=0.
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Figure 1. Architecture of the proposed ACAD-CFAR processor.

AUTOMATIC CENSORING ALGORITHM AND
DECISION STRATEGY

Before describing the proposed censoring detector, the
following conditions are assumed:

» Presence of heterogeneous environments defined by:
homogeneous, multiple interfering targets, and clutter
edges, situations.

The power of noise region Ry is assumed to be less
than the power of clutter region Reg..  The latter is
considered less than the power of interferences region
Rit .

> All interferences are immersed in clear.

At first, the reference cells, X, , I1=1,...,N, are ranked in
ascending order according to their magnitudes to yield the
structure as illustrated in Fig. 2.
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Figure 2. Power structure of the ranked cells.

The goal of the proposed censoring procedure is to estimate
which one of Rps, Rai, and Ry represents the uniform
background around the CUT [14], and consequently,
represents the AHW. Note that, the sample of Xo is not
concerned by the censoring algorithm which utilizes only the
ordered data. The proposed algorithm is based on CA-
principles [8] and composed of two passes for estimating the
transitions. Such as, a transition is considered if and
only if "1<transition<N ".

The first pass is programmed to test the transition ki between
Rns and Reie regions. Firstly, we assume that Rns =[X(1)],
Rer=9, and Riw=@. The sample X(2) is then compared to the
adaptive censoring threshold Tc¢1.S1, where Tc1 is a scaling
factor chosen to achieve a desired Pfc in this step and
S1=X(1). If X(2) is less than or equal Tc1.S1, X(1) and X(2)
are both from the noise region Rys and ki=2. The algorithm
then proceeds to the next step by comparing X(3) to the new
adaptive censoring threshold Tc2.S2, Tc2 is the scaling factor
of the second step and S;=X(1)+X(2).On the other hand, if
X(2) is greater than T¢1.S1, there is a transition from a low to
high power. Thus, X(1) and X(2) have not the same nature
and the sample X(2) is declared from the clutter region R,
meaning that ky=1 and the algorithm stops. At the j™ step,
X(j+1) is compared with the censoring threshold Tc;.S;
according to the following statistical test,

HNC

X(j+l)§> j=1,..N-1 (7

He

where Tc; is a scaling factor chosen to achieve a desired Pfc
at the j step, and S;=X(1)+X(2)+...+X(j). Through all this
description, Hc and Hnc represent the censoring and the non-
censoring hypotheses respectively. If X(+1) <Tc;Sj —
X(j+1) and X(j) are echoes from the same region Rys, that is,
ki=j+1. The algorithm continues in the same manner; under
Hnc hypothesis; until j=N-1. If X(j+1)>Tc;.S;, hypothesis Hc
is true. That is, X(j+1) and X(j) are samples from different
regions, i. e. the population {X(1), X(2), ..., X(j)} is from noise
and the sample X(j+1) e Rcw. Here, ki=j and the first pass
stops.

Once ki is obtained, the following strategy of decision is
considered:

If ki=N, the AHW is logically represented by Rns=[X(1),
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X(2), ..., X(N)]. Now, the IID conversion is activated to
output Rns"°=[Y1,Y2 ,..., Yn]. Then, the test (1) is selected by
using the corresponding adaptive threshold Ti.Z, Z=2R'°.
Note that, T; =[To, T4, ..., Timax] iS the vector of the thresholds
multipliers which is fixed to achieve a design Pfa , where imax
represents the maximum number of censored ordered data in
a homogeneous environment. For the current case, 1=0.

If ki<N/2, the first transition is confirmed. Then, the
algorithm go to search the second transition k» between R
and Rig in the rested vector [X(ki+1), ..., X(N)].

At first of the second pass, we assume that Rgy=
[X(ks+1)] and Rix=@. The sample X(ki+2) is then compared
with the adaptive censoring threshold Tc,ki+1).Ski+1) ,where
Tc,wa+1) IS a scaling factor chosen to achieve a desired Pfc in
this step and Sgi+1y=X(k1+1). If X(k1+2) is less than or equal
T (k1+1)-Ski+1), X(ki+2) is generated from the same
distribution as that of X(ki+1) and k.=k;+2. Then, the
algorithm proceeds to the next step by comparing X(ki+3)
with the adaptive censoring threshold Tc i+2).Sga+2) , Where
Tc,wa+2) is the scaling factor related to the new step and
Sea+2=X(ki+1)+X(ki+2). In  the inverse case, the two
considered samples are decided from different regions. Thus,
X(k1+2) is from Ry , ko=k1+1, and the algorithm stops. At the
k™" step, we consider the following statistical test,

HNC

<
X(ky+k+1) _ Te k) Seiy o) (8)

He

The form of expression (8) can be transformed to the form of
test (7) by substituting: j=ki+k , where j=k;+1, ..., N-1.
That is, Tcj=Tca+k  represents the scaling constant
related to the j" or (ki+k)"" step and Sj=Swi+ Where
Swarg=X(ki+1)+X(ki+2)+..+X(ki+k). Thus, if X(+1)<
Tc;.Sj —X(j+1) and X(j) have the same nature of Ry and ko=
j*+1. Under Hnc hypothesis, the algorithm continues as in the
previous tests until j=N-1. If X(j+1)>Tc;.Sj , Hc is true, the
tested samples are from different regions, that is, X(j+1) € Ri.
Here, ko=j and the second pass stops.

Under the consideration that ko>ki, the decision of detection
is obtained as follows,

If k=N, only one transition is considered (ki<N/2). In this
case, Rns=[X(1), ..., X(k1)], Riz= @ and the AHW is addressed
by Rer=[X(ki+1), ..., X(N)].Then, the 1ID conversion is
activated to output Rei'"°=[Yki+1, ..., Yn]. Thus, the test (1) is
selected by using the corresponding adaptive threshold T:.Z,

1=k, and Z=2Rg'".

If Ky<N/2, the two transitions are confirmed where
Rns=[X(1), ..., X(ki)], Ra=[X(ki+1), .., X(k2)], and
Rir=[X(k2+1), ..., X(N)]. This last segment represents the
AHW. For this situation, the sample of Xo is a sum of the two
mixed echoes of primary and secondary targets which are
merged into a single peak [14]. The IID conversion is
selected to output Rif"°=[Yio+1, ..., Yn]. Again, the test (1) is
selected by using the corresponding adaptive threshold T:.Z,

T:kz and Z:ZRitf“D.

If N/2<k<N, also two transitions are confirmed and the
AHW is addressed by Reci=[X(ki+1), ..., X(k2)]. As in the
previous cases, Ret''"°=[Ywi+1, ..,Yk2] is obtained. The
processor selects the test (1) with the corresponding adaptive

threshold T:.Z, T=ki+(N-kz) and Z=2Rq'P.

Finally, if N/2<k;<N, one transition is detected (ki) and it is
not necessary to test the second. Consequently, the AHW is
addressed by Rns=[X(1), ..., X(k1)] and the algorithm censors
all the remaining ordered samples, {X(ki+1), X(ki+2), ..,
X(N)}, and generates the vector Rn"®=[Y1, ..., Yia]. The test
(1) is selected by using the corresponding adaptive threshold

Ti.Z, 7=N-ki and Z=2R.''P.

As all CFAR censoring detectors, the proposed processor
suffers from the critical cases, i. e. if ki=N/2 or if k,=N/2. As
pre-mentioned in section 2, the CUT is located between the
cells indexed by N/2 and N/2+1. Thus, in the event ki=N/2 or
ko=N/2, the transition may occur in either the N/2" ordered
cell or the CUT. For ki=N/2, the AHW is chosen by the
corresponding Rqi: for which we avoid un excessive number of
false alarms. For the second case k,=N/2, the AHW can be
represented by Ri, (1=kz), or by Ra, (i=ki+(N-k2)). In either
event, the loss in detection will be increased considerably.

To summarize, we can give the main steps of the proposed
ACAD-CFAR as follows,

X(1)< X(2)<...< X(N)

* Begin: estimation of ki: Rns =[X(1)] , Ra=D, Rir=0.
For j=1to (N-1)

J
Sj = Z X select the corresponding Tc; .
1=1

It X(j+1)<Te; S,

Else , ki=j, Stop first pass.
a- If ki=N, AHW—Rns=[X(1), X(2), ..., X(N)].

- Generate Rns''°.

- Select test (1) with the corresponding Z and 1.
b- If ki<N/2, go to estimate k2 by using the data:
X(Kky +1) < X(K; +2) < ...< X(N)

Rus=[X(1), ..., X(k1) ], Re=[X(ks+1)], Rir=2.
For j=(ki+1) to (N-1)

. ki=j+1, repeat until j=N-1.

J
Sj = Z X(I) . select the corresponding Tc; .
1=k, +1

1t X(j+1)<Te; S,

Else, ko=j, Stop second pass.
with: ka>k1
b-1- If ke=N, AHW—Ra=[X(ki+1), ..., X(N)].
- Generate Rai'® .
- Select test (1) with the corresponding Z and 1.
b-2- If ka<N/2, AHW«—Rw=[X(k2+1), ..., X(N)].
- Generate Ri''°.
- Select test (1) with the corresponding Z and 1.
b-3- If N/2<ke<N, AHW—Ra=[X(ki+1), ..., X(k2)].
- Generate Rai''°.
- Select test (1) with the corresponding Z and 1.
c- If N/2<ki<N, AHW«Rns=[X(1), ..., X(k1)].
- Generate Res'®.
- Select test (1) with the corresponding Z and 1.
* End.
Hi or Ho.

, ka=j+1, repeat until j=N-1.
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The Pfc of the proposed censoring procedure can be given as
in[8],

N! 1
fc = — . : _
k(N = NG —ky =D)F [1+(N = )T ;10747
ky kl . 1 (9)
. (-1)". ,
%W GO (N DT,

j=1...N-1

The scaling factors, Tcj, j=1, ..., N-1, are pre-computed
iteratively from equation (9), see Appendix A.

Due to the fact that the samples Y/'s, corresponding to the
resulting AHW's, are 11D and when exactly i among N cells
have been censored, expression of Pfa can be shown to be
[20],

Pfa(i)=(1+T; )™\ (10)

For a given N and a design Pfa(i), The threshold multiplier T;
is simply computed from equation (10).

RESULTS AND DISCUSSIONS

The performance of the proposed system is evaluated and
tested on simulated data using Monte-Carlo simulations under
various clutter scenarios [22]. The detection probability and
the false alarm control are studied in Gaussian background
with a mono-pulse processing. The design Pfa is fixed at 10
for both N=16 and N=24, preferred sizes of the reference
window, with Pfc =10* and Pfc =102, respectively. In
addition, only one type of clutter is considered for all clutter
edges and each target is fluctuated according to the SWII
model with the consideration of identical radar cross-section;
i.e. SNR=INR.

The presentation of the obtained results is firstly shown by
the thresholds of the proposed CA-based CFAR and the
conventional CA- for N=16 and N=24, see Figs. 3 and 4,
respectively. For this realization, some profiles are created as
in [23, 24]. Also, the probability of detecting the transitions
(Py ) in the reference window is illustrated for the presence of
the following echoes:

» 4 interferers and then 7 clutter samples plus 4
interferers for N=16, see Figs. 5 and 6, respectively.

» 8 interferers for N=24, see Fig. 7.
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Figure 4. ACAD- and CA- thresholds for N=24.

From Figs. 3 and 4, we observe that the ACAD- and the CA-
detectors provide the same adaptive threshold in
homogeneous regions. This confirms a high probability
(0.9997) of non-detecting a transitions, and consequently, the
proposed detector censors "zero ordered cells, 7=0" in such
an environment. Concerning the last scenario of Fig. 3, the
region composed of 17 clutter samples located in the
positions 183 to 199 with power 12dB, is uniform.
Conversely, when the reference window sweeps over the
multiple targets or clutter edges regions, the CA-based
scheme threshold is much smaller than that of the CA-CFAR
and so, good detection performances of the proposed
censoring processor are expected.
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Figure 6. Probability of detecting the transitions ki and kz,
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Figure 7. Probability of detecting the first transition (k1), presence
of 8 SWII interferences, N=24.

In Fig. 5, the transition k; is localized in the ranked cell of
position 13 with a higher probability Py=0.9826. This means
that 4 samples of interferences (INR=25dB), i. e . X(13),
X(14), X(15), and X(16) will be censored. In Fig. 6, k; and k>
are centered in the locations 5 and 13, respectively. As pre-
mentioned for this event (k;<N/2 and k>>N/2), the AHW is
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addressed by the region Rq: and the remaining cells will be
rejected. From Fig. 7, it is seen that k; is centered in the
location 17 with Py=0.9992. That is, 8 samples of
interferences (INR=30dB) will be discarded, i.e. X(17) to
X(24). We remark also that the estimation of the transitions is
more exact at strong peaks, i.e. power>20dB. For the uniform
regions, Py is about 0.0003 which confirms the high
probability (0.9997) of non-detecting the transitions in these
regions, as shown in Figs. 3 and 4.

Homogeneous Environment

In the homogeneous situation, only the noise region is
considered, i.e. INR=0 and CNR=0. The performance Pd
against SNR, shown in Fig. 8, is compared to the following
detectors:

» CA-, ACMLD-, 0S-, and the optimal detector (Opt)
for N=16.

» CA-, AC-, ADCCA-, and Opt for N=24.

1 T P
For N=16, Pfa=Pfc=10E-4 P=!
For N=24, Pfa=10E-4, 7
Pfc=10E-2
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Figure 8. Pd of ACAD-, CA-, ACMLD-, OS-, AC-, and ADCCA-
and Opt detectors in homogeneous environment..

As shown in Fig. 8, the proposed detector and the other
processors, apart the OS- , perform like the CA-CFAR in
homogeneous environment and exhibit some CFAR loss in
comparison to the Opt detector for both N=16 and N=24.

Multiple Interfering Targets

To evaluate the robustness of the proposed detector versus
multiple interfering targets of power INR, the performance Pd
is shown in the presence of the following situations:

» 2,4,6and 2, 4,6, 8 interferers for N=16 and N=24,
respectively. The Pd of ACAD-CFAR is illustrated in
Fig. 9.

» 2 and 4 interferers, N=16. The results are compared
with those of the CA-, OS- and ACMLD-, see Fig. 10.

» 4 interferers, N=24. The results are compared with
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» 8 interferers, N=24. The comparison is between the

Probability of detection

Figure 9. Pd of ACAD-CFAR in multiple SWII interferers, for
N=16 and N=24.
1
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Figure 10. Pd of ACAD-, CA-, OS-, and ACMLD- detectors,

Probability of detection

those of the CA-, AC-, and ADCCA-, see Fig. 11.

ACAD-, CA-, and ADCCA-, see Fig. 12.
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Figure 11. Pd of ACAD-, CA-, AC-, and ADCCA- detectors,

presence of 4 SWII interferers, N=24.
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Figure 12. Pd of ACAD-, CA-, and ADCCA- detectors, presence
of 8 SWII interferers, N=24.

From Fig. 9, it is seen that the Pd of the proposed detector
increases by increasing SNR and also the size N of the
reference window. For a fixed value of SNR, corresponding
to either N=16 or N=24, the performance decreases as the
number of interfering targets increases. From Fig. 10, we
remark that the adaptive processors, ACAD- and ACMLD-,
give the same performance which exceeds that of the OS-,
specially, for the case of 4 SWII interferences when
SNR>15dB. From Fig. 11, we observe clearly that the
proposed scheme performs better than the censoring
ADCCA-, and AC- detectors, precisely, for moderate SNR,
i.e. between 5dB and 20dB. In Fig. 12, we remark that the
ACAD- detector can perfectly protect its robustness against
the presence of 8 SWII interferences in the reference canal
apart when SNR>20dB where a similar comportment with
that of the ADCCA- is appeared. In the illustrated curves,
substantial and successive degradation in performance of the
CA-CFAR is observed.

Clutter Edges

For the false alarm control Pfa, we assume a scenario in
which a clutter edge enters the reference window with
different powers of CNR as follows:

» CNR=5, 10, and 30dB: control the Pfa of ACAD-
detector for N=16, see Fig. 13.

» CNR=10dB: comparison of the Pfa of ACAD- with
that of the AC- and ADCCA- detectors for N=24, see
Fig. 14.
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Figure 13. Pfa of ACAD-CFAR for CNR=5, 10, and 30dB, N=16.
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Figure 14. Pfa of ACAD-, AC-, and ADCCA.- detectors for
CNR=10dB, N=24.

As shown in Figs. 13 and 14, the loss in regulation between
the Pfa design and the Pfa of the processors at hand increases
as the distance r between the clutter edge position and the
CUT decreases. A sharp spiky in false alarm probability is
observed at r=0. This results when the clutter edge enters the
CUT. From Fig. 13, we observe an overlap of the curves
when r = -8 to -1. For the other side, a convergence between
the curves of 5dB and 30dB is seen. In Fig. 14, we remark
that the loss in performance of the proposed CFAR is smaller
than that of the AC- and ADCCA- detectors when the clutter
edge is located in either the leading or the lagging windows,
and consequently, a regulation of the false alarm is verified.

Multiple Interfering Targets and Clutter Edges

For the presence of both undesired outliers in the reference
window, the Pd is shown by assuming the presence of the
following scenarios:

» 4 interferers and 2 clutter samples with CUT in clear
for N=16. The results are compared with those of the
OS-, see Fig. 15.

» 2 interferers and 14 clutter samples with CUT in
clutter for N=24. The results are compared with those
of the AC-, see Fig. 16.
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Figure 15. Pd of ACAD- and OS- detectors, presence of 4 SWII
interferers and 2 clutter samples (CNR=10dB), with Xo in clear,
N=16.
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Figure 16. Pd of ACAD- and AC- detectors. Presence of 2 SWII
interferers and 14 clutter samples (CNR=10dB), Xo in clutter,
N=24.

From Fig. 15, we remark that the proposed detector protects
its robustness against the presence of both outliers in
comparison to the OS- detector, precisely, when SNR>10dB.
Concerning Fig. 16, the obtained results show a similar
comportment of the ACAD- and AC- detectors for
SNR<17.5dB and some loss in performance presented by the
ACAD- at high SNR's.

CONCLUSION

In this work, we have proposed an adaptive CFAR detector,
named ACAD-, to perform suitably in heterogeneous
environments. The proposed detector, which does not require
any prior knowledge about the background, uses an automatic
censoring technique to estimate the unknown transitions in
the reference window and then discards, dynamically, the
undesired echoes. Depending on the detected transitions, the
addressed detector follows a strategy to give its decision of
detection by using an 11D conversion. For evaluation, the
performance of detection is compared with that of the other
competitive CFAR's such as the CA-, ACMLD-, OS-, AC-,
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and ADCCA-. It is seen that the ACAD-CFAR performs like
the conventional CA- in the homogeneous environment.
For non-homogeneous situations, the results show that the
proposed CA(N-1) system performs perfectly in multiple SWII
interferences in comparison to the processors at hand, and
their performances in clutter edges and also in the presence of
both unwanted outliers are acceptable.

For future works, we suggest as an extension of this study to
consider the case of interfering targets immersed in clutter for
Gaussian and Compound-Gaussian environments.

Appendix. A

The Pfc of the proposed censoring procedure is equivalent to
that obtained in [8] for the GTL-CMLD- detector. The values
of the factors Tc;, j=1, ..., N-1, are provided in the following

matrices Mé (the transpose of the matrices Mc of size

(N/2+1)x(N-1) ). Note that, any factor can be selected from
the matrices Mc as follows:

» Mc (1, j) for the first pass.
» Mc (ki+1, j-kiq) for the second pass.

The scaling factors Tcj, j=1, ..., N-1, of ACAD-CFAR for N=16 and a design Pfc=10*,

10666.6 110.550 24.668  11.840
78.173 15.547 07.049  04.443
13.583 05.759 03.489 02.529
05.360 03.111 02.193 01.730
02.976 02.037 01.574 01.316
01.976  01.495 01.231 01.075
01.463 01.185 01.022 00.927
M{ =| 01.165 00.993 00.891 00.838
00.980 00.871 00.812 00.794
00.862 00.797 00.774  00.800
00.790 00.762 00.783  00.889
00.757 00.773 00.873  01.260
00.768 00.863  01.240 0
00.859  01.229 0 0
01.223 0 0 0
The scaling factors Tcj, j=1, ..., N-1, of ACAD-CFAR for
104.000 10.600 04.990 03.430 02.744 02.370
07.500 03.150 02.042 01580 01.339 01.190
02.750 01.670 01.244 01.024 00.894 00.810
01554 01.110 00.889 00.761 00.679 00.623
01.062 00.826 00.693 00.609 00.552 00.512
00.801 00.658 00.569 00.557 00.469 00.439
00.644 00.548 00.485 00.442 00.410 00.388
00.539 00.471 00.424 00.391 00.367 00.350
00.465 00.415 00.379 00.354 00.335 00.321
00.410 00.372 00.345 00.324 00.309 00.299
00.369 00.339 00.317 00.301 00.290 00.282
M{ =| 00.337 00.313 00.296 00.284 00.275 00.270
00.311 00.292 00.279 00.270 00.264 00.262
00.291 00.276 00.266 00.260 00.257  00.259
00.275 00.264 00.256 00.253 00.254 00.261
00.262 00.255 00.251 00.268 00.257 00.273
00.253 00.249 00.249 00.254 00.270 00.306
00.248 00.247 00.252 00.267 00.303 00.415
00.246  00.251 00.265 00.300 00.411 0
00.250 00.264 00.298 00.407 0 0
00.263 00.297  00.230 0 0 0
00.296  00.227 0 0 0 0
00.403 0 0 0 0 0

07.717 05.868 04.880 04.302 03.957
03.306 02.708 02.362 02.155 02.040
02.035 01.752 01.583 01.487 01.448
01.469 01.313 01.224 01.184 01.193
0l1.164 01.075 01.034 01.036 01.097
00.984 00.939 00.936 00.987 01.144
00.878 00.870 00.913 01.054 01.549
00.824 00.861 00.991 01.451 0
00.825 00.945 01.379 0 0
00.912 01.326 0 0 0
01.288 0] 0 ] 0

0 ] 0 ] 0

0 6] 0 6] 0

0 0 0 0 0

0 0 0 0 0

02.140 01986 01.880 01.800 01.742 01.699 01.669
01.091 01.023 00.974 00.938 00911 00.892 00.879
00.752 00.710 00.680 00.657 00.640 00.629 00.622
00.584 00.555 00.533 00.518 00.507 00.500 00.497
00.483 00.462 00.447 00.436 00.429 00.425 00.425
00.417 00.401 00.390 00.382 00.378 00.378 00.381
00.371 00.359 00.351 00.346 00.344 00.347 00.354
00.337 00.328 00.322 00.320 00.322 00.328 00.341
00.311 00.305 00.302 00.303 00.308 00.320 00.344
00.292 00.288 00.288 00.293 00.304 00.326 00.374
00.278 00.277 00.281 00.291 00.312 00.357 00.495
00.269 00.272 00.281 00.301 00.344 00.476 0
00.264 00.273 00.292 00.333  00.460 0 0
00.267 00.284 00.324  00.448 0 0 0
00.278 00.317 00.437 0 0 0 0
00.311 00.428 0 0 0 0 0
00.421 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
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N=24 and a design Pfc=107?,




International Journal of Applied Engineering Research ISSN 0973-4562 VVolume 13, Number 15 (2018) pp. 11927-11936

© Research India Publications. http://www.ripublication.com

ACKNOWLEDGMENTS

The authors are grateful to the reviewers and to Dr L.
Boukelkoul, from university of Skikda, for his important
discussions.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Finn, H, M., and Johnson, R, S., 1968, "Adaptive
detection mode with threshold control as a function
of spatially sampled clutter level estimate,” RCA.
Review., 29(3), pp. 414-467.

Ghandhi, P, P., and Kassam, S, A., 1988, "Analysis
of CFAR processors in non homogeneous
background," IEEE. Transactions on Aerospace and
Electronic Systems., 24(4), pp. 443- 454.

Hansen, V, G., 1973, "Constant false alarm rate
processing in search radars,” In Proceedings of
IEE. International Radar Conference., pp. 325-332.

Trunk, G, V., 1978, "Range resolution of targets
using automatic detectors,” IEEE. Transactions on
Aerospace and Electronic Systems., 14(5), pp. 750-
755.

Weiss, M., 1982, "Analysis of some modified cell-
averaging CFAR processors in multiple target
situations,” IEEE. Transactions on Aerospace and
Electronic Systems., 18(1), pp. 102-114.

Rickard, J, T., and Dillard, G, M., 1977, "Adaptive
detection algorithms for multiple target situations,"
IEEE. Transactions on Aerospace and Electronic
Systems., 13(4), pp. 338-343.

Rohling, H., 1983, "Radar CFAR thresholding in
clutter and multiple target situations,” IEEE.
Transactions on Aerospace and Electronic Systems.,
19(4), pp. 608- 621.

Himonas, S, D., and Barkat, M., 1992, "Automatic
censored CFAR detection for non homogeneous
environments,"” IEEE. Transactions on Aerospace
and Electronic Systems., 28(1), pp. 286-304.

Smith, M, E., and Varshney, P, K., 2000,
"Intelligent CFAR processor based on data
variability,” IEEE. Transactions on Aerospace and
Electronic Systems., 36(3), pp. 837-847.

Hammoudi, Z., and Soltani, F., 2004, "Distributed
IVI-CFAR detection in  non homogeneous
environments,” Signal Processing., 84, pp. 1231-
1237.

Zaimbashi, A., and Norouzi, Y., 2008, "Automatic
dual censoring cell averaging CFAR detector in non
homogeneous environments,” EURASIP. Journal of
Signal Processing., 88(11), pp. 2611-2621.

Zaimbashi, A., 2014, "An adaptive cell averaging-
based CFAR detector for interfering targets and

11936

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

clutter edge situations,” Digital Signal Processing.,
31, pp. 59-68.

Boudemagh, N., and Hammoudi, Z., 2014,
"Automatic  censoring CFAR  detector for
heterogeneous environments,” International Journal
of Electronics and Communications, AEU., 68, pp.
1253-1260.

Anatolii, A, Kononov., Jin-Ha, Kim., Jin-Ki, Kim.,
and Gyoungju, Kim., 2015, "A new class of
adaptive CFAR methods for non homogeneous
environments," Progress in Electromagnetics
Research, B., 64, pp. 145-170.

Abbadi, A., Abbane, A., Bencheikh, M, L., and
Soltani, F., 2017, " A new adaptive CFAR processor
in multiple target situations,” IEEE. Seminar on
Detection Systems Architectures and Technologies.,

pp. 1-5.

Lu, S, Yi, W., Liu, W., Cui, G., Kong, L., and
Yang, X., 2018, "Data-dependent clustering CFAR
detector in heterogeneous environment," IEEE.
Transactions on Aerospace and Electronic Systems.,
54(1), pp. 476- 485.

Xu, H., Yang, Z., He, S., Tian, M., Liao, G., and
Sun, Y., 2018, " A generalized sample weighting
method in heterogeneous environment for space-
time adaptive processing,” Digital Signal Processing
Journal., 72(C), pp. 147-159.

Hong, L., Dai, F., and Wang, X., 2018, "
Knowledge-based wideband radar target detection in
the heterogeneous environment," Journal of Signal
Processing., 144(C), pp. 169-179.

Helsttrom, CW., 1995, Elements of Signal detection
and estimation., Prentice Hall.

Barkat, M., 2005, Signal Detection and Estimation.,
Second ed, Artech House., Boston.

David, H, A., 1981, Order Statistics., NY, John
Wiley & Sons.

Beklaouz, H, L., Hamadouche, M., Mimi, M., and
Taleb-Ahmed, A., 2016, "CFAR detection in the
framework of time-frequency analysis," International
Review of Electrical Engineering., 11(3), pp. 323-
329.

Zattouta, B., Farrouki, A., and Barkat, M., 2007,
"Automatic censoring detection using binary clutter
map estimation for non Gaussian environments,"
IEEE, International Conference on Signal Processing
and Communications., pp. 205- 208.

Machado, J, R-F., Mojena, N-H., and Bacallao, J, C-
V., 2017, “Evaluation of CFAR detectors
performance," ITECKNE, 14(2), pp. 170-178.



