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Abstract 

We formulate a mathematical model on Zika virus by 

considering two population sizes of human beings and 

mosquitoes. The vertical transmission of Zika virus in human 

population is also considered. Basic reproductive number  𝑅0 

and equilibrium points for our model are defined. The disease-

free equilibrium is proved to be globally stable when 𝑅0 < 1, 

which means the disease, will die out and when 𝑅0 > 1, the 

endemic equilibrium is globally stable. Extensive numerical 

simulations are carried out to establish the analytical results. 

The efficacy of personal protection from mosquito to human 

and from pregnant women to newborn child are also carried 

out by numerical simulations. 

Keywords: Zika virus, Basic Reproduction Rate, Stability 

Analysis, Simulation. 

 

INTRODUCTION 

Zika virus was first recognized in Uganda in 1947. From 1951 

to 1981, the confirmation of human infection with Zika virus 

was also identified from other African countries including the 

Central African Republic, Sierra Leone, Tanzania, Egypt, 

Gabon, and Uganda, as well as in parts of Asia including 

India, Indonesia, the Philippines, Thailand, Malaysia, and 

Vietnam [1, 2]. 

In 2007, the first documented outbreak of Zika virus disease 

was reported in Yap State, Federated States of Micronesia; 

73% of the population within the age 3 years was estimated to 

have been infected [2]. Subsequent outbreaks occurred in 

Southeast Asia and the Western Pacific [3]. In May 2015, the 

World Health Organization reported the first local 

transmission of Zika virus in the Region of the Americas, with 

autochthonous cases identified in Brazil [4]. In December, the 

Ministry of Health estimated that 440,000–1,300,000 

suspected cases of Zika virus disease had occurred in Brazil in 

2015 [5].  

Zika virus is transmitted to human beings through the bite of 

an infected Aedes species mosquito (A. aegypti and A. 

albopictus). The most common symptoms of Zika virus 

disease are fever, rash, joint pain, and conjunctivitis (red 

eyes). The illness is usually mild with symptoms lasting from 

several days to a week. Mosquitoes become infected when 

they feed on a person already infected with the virus. Infected 

mosquitoes can then spread the virus to other people through 

bites. Mosquitoes that spread Zika are aggressive daytime 

biters. They can also bite at night. These mosquitoes typically 

lay eggs in and near standing water in things like buckets, 

bowls, animal dishes, flower pots and vases.  They prefer to 

bite people, and live both indoors and outdoors near people. In 

human population, Zika virus is transmitted from an infected 

mother to her baby during pregnancy and may also be 

transmitted through blood transfusion and/or sexual contact 

with infected human. An estimated 80% of infected human 

with Zika virus are asymptomatic [6, 7, 8]. 

In past two and half decades, several epidemic models have 

been formulated for predicting the transmission of epidemic 

diseases such as HIV/AIDS [9,10], which are helpful for 

developing the mathematical model on the transmission 

dynamics of Zika virus in human population. Agusto et al. 

[11] formulated a model on ZIKV transmission in adult 

population in adult population with vertical transmission. 

Daihai He et al. [12] established a comparison study of Zika 

virus outbreaks in French Polynesia, Colombia and the State 

of Bahia in Brazil. Usman et al. [13] developed a 

mathematical model for the Transmission Dynamics of Zika 

Virus Infection with Combined Vaccination and Treatment 

Interventions. Bonyah et al. [14] formulated a theoretical 

model for Zika virus transmission. Gao et al. [15] developed a  

mathematical model on prevention and control of Zika as a 

Mosquito-Borne and Sexually Transmitted Disease. Eskild 

Petersen et al. [16] had formulated a review paper on 

unexpected and rapid spread of Zika Virus in the Americas - 

implications for public health preparedness for mass 

gatherings at the 2016 Brazil Olympic Games. 

In this paper, we have formulated a mathematical model of 

Zika virus transmission for both human and mosquito 

population. We have considered the Susceptible class, 

Infected class and Recovered class in human population with 

vertical transmission. In mosquito population, we have 

considered two classes (Susceptible and Infected) for Zika 

virus transmission. We find basic reproduction number 𝑅0 

gives global dynamical behavior of the model. If 𝑅0 < 1, the 

disease-free equilibrium is globally stable, which means the 

disease will die out and if 𝑅0 > 1, the endemic equilibrium is 

globally stable. The basic reproduction number 𝑅0 is also used 

in numerical simulations to discuss the effectiveness of 

control strategies. 

The paper is organized as follows: Introduction is given in 

Section 1; the basic assumptions and parameters of the model 
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and the epidemic model is developed  in Section 2; Section 3 

establishes the stability of the system developed; numerical 

simulations is given in Section 4; and finally conclusion in 

Section 5. 

 

MODEL DESCRIPTION AND FORMULATION: 

We divide the human population into three classes 𝑆𝐻𝐼𝐻𝑅𝐻 

(Susceptible-Infected-Recovered) and the mosquito 

population into two classes 𝑆𝑀𝐼𝑀  (Susceptible-Infected). 

Schematic flow of this model is shown in figure 2 and the 

state variables and associated parameters of this model are 

given in Table 1. 

 

Table 1∶ The state variables and associated parameters 

𝑆𝐻(𝑡) :  Susceptible proportions of human in time t 

𝐼𝐻(𝑡) :  Infectious proportions of human in time t 

𝑅𝐻(𝑡) :  Recovered proportions of human in time t 

𝑆𝑀(𝑡) :  Susceptible proportions of mosquito in time t 

𝐼𝑀(𝑡) :  Infectious proportions of mosquito in time t 

𝑆𝐻̅(𝑡) :  Susceptible humans in time t 

𝐼𝐻̅(𝑡) :  Infectious humans in time t 

𝑅̅𝐻(𝑡) :  Recovered humans in time t 

𝑆𝑀̅(𝑡) :  Susceptible mosquito in time t 

𝐼𝑀̅(𝑡) :  Infectious mosquito in time t 

𝑁𝐻(𝑡) :  Total human population in time t 

𝑁𝑀(𝑡) :  Total mosquito population in time t 

𝐵𝐻  :  Birth rate and immigration rate of humans 

𝐵𝑀 :  Birth rate and immigration rate of mosquitoes 

𝛽𝐻  :  Transmission probability of Zika virus from human 

to human and from mosquito to human 

𝛽𝑀 :  Transmission probability of Zika virus from human 

to mosquito 

𝜂   :  Rate of transmission from Infected humans to 

Recovered humans 

𝛿   : Rate of transmission from Recovered humans to 

Susceptible humans 

𝜇ℎ :  Natural death rate of humans 

𝜇𝑧 :  Death rate of humans due to Zika virus 

𝜇𝑚 :  Natural death rate of mosquito 

θ   :  Rate of vertical transmission in human population. 

 

Basic assumptions of model: 

We assume that humans enter the susceptible class through a 

constant birth rate and immigration rate 𝐵𝐻. When an infected 

with Zika virus mosquito bites a Susceptible human, he/she 

moves to the infected class with the transmission 

probability 𝛽𝐻, where 𝛽𝐻 is the sum of the transmission 

probability of Zika virus from human to human and from 

mosquito to human.  After some time, the infectious humans 

recover and move to the Recovered class with a constant 

rate 𝜂. The recovered humans have some immunity to the 

disease and do not get clinically ill, but they can pass the 

infection to mosquitoes. After some period of time, they lose 

their immunity and return to the Susceptible class with 

constant rate 𝛿. Humans leave the population through a 

natural death rate 𝜇ℎ, and through a per capita disease-induced 

death rate 𝜇𝑧. In human population, the vertical transmission 

rate θ is assumed, that is the rate of transmission of Zika virus 

from infected pregnant women to new born children.  

In mosquito population, we assumed that the mosquito enters 

the Susceptible class through a constant birth rate and 

immigration rate 𝐵𝑀 .  When a susceptible mosquito bites an 

infected human being with Zika virus, then the mosquito gets 

infected with Zika virus and it goes to infected class. The 

constant transmission probability of Zika virus from human to 

mosquito 𝛽𝑀 is considered. Mosquitoes leave the population 

through a constant natural death rate 𝜇𝑚 only is assumed. We 

do not assume the vertical transmission in mosquito 

population. 

 

Model Equations for humans population: 

Based on our assumptions and the flow of transmission of 

zika virus in human population as depicted in figure 1, we 

have the following system of equations: 

 

𝑑𝑆𝐻̅

𝑑𝑡
= 𝐵𝐻𝑁𝐻 − 𝛽𝐻𝑆𝐻̅(𝐼𝐻̅ + 𝐼𝑀̅) − 𝜇ℎ𝑆𝐻̅ + 𝛿𝑅̅𝐻 

𝑑𝐼𝐻̅

𝑑𝑡
= 𝛽𝐻𝑆𝐻̅(𝐼𝐻̅ + 𝐼𝑀̅) − (𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃)𝐼𝐻̅                  (1) 

 
𝑑𝑅̅𝐻

𝑑𝑡
= 𝜂𝐼𝐻̅ − (𝜇ℎ + 𝛿)𝑅̅𝐻 

 

Figure 1: Schematic diagram of Zika virus transmission 

Similarly, for the flow of transmission of Zika virus in 

mosquito population, we have the system of equations as: 

𝑑𝑆𝑀̅

𝑑𝑡
= 𝐵𝑀𝑁𝑀 − 𝛽𝑀𝑆𝑀̅𝐼𝑀̅ − 𝜇𝑚𝑆𝑀̅ 

𝑑𝐼𝑀̅

𝑑𝑡
= 𝛽𝑀𝑆𝑀̅𝐼𝑀̅ − 𝜇𝑚𝐼𝑀̅.                                                   (2) 

With these two conditions 𝑆𝐻̅ + 𝐼𝐻̅ + 𝑅̅𝐻 = 𝑁𝐻 and 𝑆𝑀̅ +
𝐼𝑀̅ = 𝑁𝑀. 

Without loss of generality, we can write with the proportions 

𝑆𝐻 =
𝑆̅𝐻

𝑁𝐻
 , 𝐼𝐻 =

𝐼𝐻̅

𝑁𝐻
 , 𝑅𝐻 =

𝑅̅𝐻

𝑁𝐻
 , 𝑆𝑀 =

𝑆̅𝑀

𝑁𝑀
 , 𝐼𝑀 =

𝐼𝑀̅

𝑁𝐻
 . 

Since 𝑅𝐻 = 1 − 𝑆𝐻 − 𝐼𝐻  and 𝑆𝑀 = 1 − 𝐼𝑀 ,the above two 

systems (1) and (2) can be reduced to the following equivalent 

system: 
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𝑑𝑆𝐻

𝑑𝑡
= 𝐵𝐻 − 𝛽𝐻𝑆𝐻(𝐼𝐻 + 𝐼𝑀) − 𝜇ℎ𝑆𝐻 + 𝛿(1 − 𝑆𝐻 − 𝐼𝐻) 

𝑑𝐼𝐻

𝑑𝑡
= 𝛽𝐻𝑆𝐻(𝐼𝐻 + 𝐼𝑀) − (𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃)𝐼𝐻                    (3) 

𝑑𝐼𝑀

𝑑𝑡
= 𝛽𝑀(1 − 𝐼𝑀)𝐼𝑀 − 𝜇𝑚𝐼𝑀.  

The feasible region for the system (3) is as follows: 

Γ = {(SH, IH, IM) ∈ R3: SH > 0, IH ≥ 0, IM ≥ 0, SH + IH ≤ 1, IM ≤ 1}. 

 

STABILITY OF THE MODEL 

In this section, we find the equilibrium states and basic 

reproduction number of the model. We also prove that our 

model is locally and globally stable for both disease-free-

equilibrium and endemic equilibrium points. 

Finding equilibrium states by setting the right hand side of all 

the model equations of system (3) equal to zero, we obtain 

two equilibrium states: 

(i) Disease free equilibrium state: E0 = (1,0,0) 

(ii) Endemic equilibrium state : E1 = (𝑆𝐻
∗  ,  𝐼𝐻

∗  , 𝐼𝑀
∗  ) 

The system being modeled is expected to show different kinds 

of behavior in the long run. The equilibrium points and the 

conditions for their existence are that they provide us 

mathematical conditions based on which the long-term 

behavior of the system can be predicted and classified into a 

finite number of possibilities represented by the equilibrium 

points. 

Endemic Equilibrium points of the system (3): 

From the third equation of the system (3) by equating to zero, 

we get 

𝐼𝑀 =
𝛽𝑀𝐼𝐻

𝜇𝑚+𝛽𝑀𝐼𝐻
                                                                  

Similarly, from the first and the second of the system (3) by 

equating to zero and solving it, we get 

𝑆𝐻 =
𝐴−𝐵𝐼𝐻

𝐶
, where 𝐴 = 𝐵𝐻 + 𝛿, 𝐵 = 𝜇ℎ + 𝜇𝑧 + 𝜂 + 𝛿 − 𝜃, 

𝐶 = 𝜇 + 𝛿. 

Putting the values of 𝐼𝑀 and 𝑆𝐻 in second equation of system 

(3), we get 

𝐵𝛽𝐻𝛽𝑀𝐼𝐻
2 + [𝐶𝐷𝛽𝑀 − 𝐴𝛽𝐻𝛽𝑀 + 𝐵𝛽𝐻(𝜇𝑚 + 𝛽𝑀)]𝐼𝐻 + 𝐶𝐷𝜇𝑚 − 𝐴𝛽𝐻(𝜇𝑚 + 𝛽𝑀) = 0 

 

Since all the parametric values are positive, so we consider 

only positive root of above equation and endemic 

equilibriums  

E1 = (𝑆𝐻
∗  ,  𝐼𝐻

∗  , 𝐼𝑀
∗  ) are as follows: 

𝐼𝐻
∗ =

𝐶𝐷𝛽𝑀−𝐴𝛽𝐻𝛽𝑀+𝐵𝛽𝐻(𝜇𝑚+𝛽𝑀)+√(𝐶𝐷𝛽𝑀−𝐴𝛽𝐻𝛽𝑀+𝐵𝛽𝐻(𝜇𝑚+𝛽𝑀))2−4𝐵𝛽𝐻𝛽𝑀(𝐶𝐷𝜇𝑚−𝐴𝛽𝐻(𝜇𝑚+𝛽𝑀))

2𝐵𝛽𝐻𝛽𝑀
, 

𝐼𝑀
∗ =

𝛽𝑀𝐼𝐻
∗

𝜇𝑚+𝛽𝑀𝐼𝐻
∗  and 𝑆𝐻

∗ =
(𝜇ℎ+𝜇𝑧+𝜂−𝜃)𝐼𝐻

∗

𝛽𝐻(𝐼𝐻
∗ +𝐼𝑀

∗ )
. 

 

 

 

Basic reproduction number: 

For any epidemic model, the basic reproduction number is the 

average number of secondary infectious cases produced by a 

single infection in total susceptible population. The basic 

reproduction number is calculated by R0=ρ(FV-1), where ρ is 

spectral radius of the matrix FV-1 and F & V are the matrices 

of new infection terms and the remaining transmission terms 

respectively [17]. 

For the systems (1) & (2), the matrices F and V are as follows: 

𝐹 = [
𝛽𝐻 𝛽𝐻

𝛽𝑀 0
]   and 𝑉 = [

𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃 0
0 𝜇𝑚

]. 

Hence, the basic reproduction number of the above model is 

𝑅0 =
𝛽ℎ𝜇ℎ

2+√𝜇𝑚𝛽𝐻
2+4(𝜇ℎ+𝜇𝑧+𝜂−𝜃)𝛽𝑀

2

2𝜇𝑚
2 (𝜇ℎ+𝜇𝑧+𝜂−𝜃)

. 

 

Theorem 1 : The system (3) is locally asymptotically stable 

for disease-free equilibrium, when 𝑅0 < 1. 

Proof: Jacobian matrix of the system (3) is as follows: 

𝐽 = [

−(𝜇ℎ + 𝛿) −(𝛽𝐻 + 𝛿) −𝛽𝐻

0 𝛽𝐻 − (𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃) 𝛽𝐻

0 𝛽𝑀 −𝜇𝑚

] 

 

The eigenvalues of Jacobian matrix J are as follows: 

𝜆1 = −(𝜇 + 𝛿) 

𝜆2 = −
(𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃 + 𝜇𝑚 − 𝛽𝐻)

2
−

√(𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃 − 𝜇𝑚 − 𝛽𝐻)2 + 4𝛽𝐻𝛽𝑀

2
 

𝜆3 = −
(𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃 + 𝜇𝑚 − 𝛽𝐻)

2
+

√(𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃 − 𝜇𝑚 − 𝛽𝐻)2 + 4𝛽𝐻𝛽𝑀

2
 

Eigenvalues 𝜆1  and 𝜆2 have negative real value and we can 

easily verify that the eigenvalue 𝜆3 < 0  , when 𝑅0 < 1.  

Hence, all eigenvalues of Jacobian matrix J are negative when 

𝑅0 < 1. 

This proves that our the system is locally asymptotically 

stable when 𝑅0 < 1.   

Theorem 2: The unique endemic equilibrium point 𝐸1 is 

globally asymptotically stable if 𝑅0 > 1. 

Proof : We will prove the global stability of endemic 

equilibrium 𝐸1 using geometric approach   [17], which has 

been attached briefly in Appendix A. The sufficient conditions 

for the global stability are shown in the hypotheses (H1) and 

(H2) with the Bendixson criteria given in Theorem (Appendix 

A).  

For the general solution (𝑆𝐻(𝑡), 𝐼𝐻(𝑡), 𝐼𝑀(𝑡)) of system (3), 

the Jacobian matrix is 

𝐽 = [

−𝛽𝐻(𝐼𝐻 + 𝐼𝑀) − 𝜇ℎ − 𝛿 −𝛽𝐻𝑆𝐻 − 𝛿 −𝛽𝐻𝑆𝐻

𝛽𝐻(𝐼𝐻 + 𝐼𝑀) 𝛽𝐻𝑆𝐻 − (𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃) 𝛽𝐻𝑆𝐻

0 𝛽𝑀(1 − 𝐼𝑀) −𝛽𝑀𝐼𝑀 − 𝜇𝑚

]. 
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The matrix 𝐽[2], the second additive compound matrix of the 

Jacobian for n=3, is defined as 

𝐽[2] = [

𝑗11 + 𝑗22 𝑗23 −𝑗13

𝑗32 𝑗11 + 𝑗33 𝑗12

−𝑗31 𝑗21 𝑗22 + 𝑗33

]. 

So, its second additive compound matrix 𝐽[2] is  

𝐽[2] =

[

𝑥 𝛽𝐻𝑆𝐻 𝛽𝐻𝑆𝐻

𝛽𝑀(1 − 𝐼𝑀) 𝑦 −𝛽𝐻𝑆𝐻 − 𝛿
0 𝛽𝐻(𝐼𝐻 + 𝐼𝑀) 𝛽𝐻𝑆𝐻 − (𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃) − 𝛽𝑀𝐼𝑀 − 𝜇𝑚

], 

where 𝑥 = −𝛽𝐻(𝐼𝐻 + 𝐼𝑀) − 𝜇ℎ − 𝛿 + 𝛽𝐻𝑆𝐻 − (𝜇ℎ + 𝜇𝑧 +
𝜂 − 𝜃) and 

𝑦 = −𝛽𝐻(𝐼𝐻 + 𝐼𝑀) − 𝜇ℎ − 𝛿 − 𝛽𝑀𝐼𝑀 − 𝜇𝑚.  

Let the function 𝑃 = 𝑃(𝑆𝐻 , 𝐼𝐻 , 𝐼𝑀  ) be defined as 

𝑃 = 𝑃(𝑆𝐻, 𝐼𝐻, 𝐼𝑀 )  =

[
 
 
 
1 0 0

0
𝐼𝐻

𝐼𝑀
0

0 0
𝐼𝐻

𝐼𝑀]
 
 
 
= 𝑑𝑖𝑎𝑔 {1,

𝐼𝐻

𝐼𝑀
,
𝐼𝐻

𝐼𝑀
 }  

Then, 𝑃𝑓𝑃
−1 =

[
 
 
 
 
0 0 0

0
𝐼𝐻
′

𝐼𝐻
−

𝐼𝑀
′

𝐼𝑀
0

0 0
𝐼𝐻
′

𝐼𝐻
−

𝐼𝑀
′

𝐼𝑀]
 
 
 
 

                                        (4) 

where 𝑃𝑓 is the matrix obtained by replacing each elements of 

𝑃 by its derivative in the direction of 𝑓. 

 𝑃𝑓𝐽[2]𝑃−1 =

[
 
 
 𝑥 𝛽𝐻𝑆𝐻

𝐼𝑀

𝐼𝐻
𝛽𝐻𝑆𝐻

𝐼𝑀

𝐼𝐻

𝛽𝑀(1 − 𝐼𝑀)
𝐼𝐻

𝐼𝑀
𝑦 −𝛽𝐻𝑆𝐻 − 𝛿

0 𝛽𝐻(𝐼𝐻 + 𝐼𝑀) 𝛽𝐻𝑆𝐻 − (𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃) − 𝛽𝑀𝐼𝑀 − 𝜇𝑚]
 
 
 

, 

where 𝑥 = −𝛽𝐻(𝐼𝐻 + 𝐼𝑀) − 𝜇ℎ − 𝛿 + 𝛽𝐻𝑆𝐻 − (𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃)  

and 

𝑦 = −𝛽𝐻(𝐼𝐻 + 𝐼𝑀) − 𝜇ℎ − 𝛿 − 𝛽𝑀𝐼𝑀 − 𝜇𝑚.  

𝐵 = 𝑃𝑓𝑃
−1 + 𝑃𝑓𝐽

[2]𝑃−1 = [
𝐵11 𝐵12

𝐵21 𝐵22
],   

where  𝐵11 = [−𝛽𝐻(𝐼𝐻 + 𝐼𝑀) − 𝜇ℎ − 𝛿 + 𝛽𝐻𝑆𝐻 − (𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃)], 

 𝐵12 = [𝛽𝐻𝑆𝐻
𝐼𝑀

𝐼𝐻
      𝛽𝐻𝑆𝐻

𝐼𝑀

𝐼𝐻
],  𝐵21 = [

𝛽𝑀(1 − 𝐼𝑀)
𝐼𝐻

𝐼𝑀

0
] and 

𝐵22 = [
𝑦 +

𝐼𝐻
′

𝐼𝐻
−

𝐼𝑀
′

𝐼𝑀
−𝛽𝐻𝑆𝐻 − 𝛿

𝛽𝐻(𝐼𝐻 + 𝐼𝑀) 𝛽𝐻𝑆𝐻 − (𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃) − 𝛽𝑀𝐼𝑀 − 𝜇𝑚 +
𝐼𝐻
′

𝐼𝐻
−

𝐼𝑀
′

𝐼𝑀

], 

where 𝑦 = −𝛽𝐻(𝐼𝐻 + 𝐼𝑀) − 𝜇ℎ − 𝛿 + 𝛽𝐻𝑆𝐻 − (𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃) −
𝛽𝑀𝐼𝑀 − 𝜇𝑚. 

Now, for a vector (𝑢, 𝑣, 𝑤) in 𝑹3, we select a norm as 
|(𝑢, 𝑣, 𝑤)| = 𝑚𝑎𝑥{|𝑢|, |𝑣 + 𝑤|} and denote 𝜇(𝐵) the 

Lozinskii measure for this norm.  

From (4), it follows that 𝜇(𝐵) ≤ sup {𝑘1, 𝑘2}                      (5) 

where 𝑘1 and  𝑘2 are defined as follows: 

𝑘1 = 𝐵11 + |𝐵12| and 𝑘2 = 𝜇1(𝐵22) + |𝐵21|, where |𝐵12| and 

|𝐵21| are matrix norms with respect to the vector norm 𝐿1 and 

𝜇1 denotes the Lozinskii measure with respect to the  vector 

norm 𝐿1. So, we have   

𝑘1 = 𝐵11 + |𝐵12| 

= −𝛽𝐻(𝐼𝐻 + 𝐼𝑀) − 𝜇ℎ − 𝛿 + 𝛽𝐻𝑆𝐻 − (𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃) + 𝑆𝑢𝑝 {𝛽𝐻𝑆𝐻

𝐼𝑀
𝐼𝐻

, 𝛽𝐻𝑆𝐻

𝐼𝑀
𝐼𝐻

} 

𝑘1 = −𝛽𝐻(𝐼𝐻 + 𝐼𝑀) − 𝜇ℎ − 𝛿 + 𝛽𝐻𝑆𝐻 − (𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃) + 𝛽𝐻𝑆𝐻
𝐼𝑀

𝐼𝐻
                   (6) 

Similarly, 𝑘2 = 𝜇1(𝐵22) + |𝐵21| 

= 𝛽𝑀(1 − 𝐼𝑀)
𝐼𝐻

𝐼𝑀
+ 𝛽𝐻𝑆𝐻 − (𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃) − 𝛽𝑀𝐼𝑀 − 𝜇𝑚 +

𝐼𝐻
′

𝐼𝐻
−

𝐼𝑀
′

𝐼𝑀
                 (7) 

From second and third equations of system (3), we can rewrite 

as 

𝐼𝐻
′

𝐼𝐻
+ (𝜇ℎ + 𝜇𝑧 + 𝜂 − 𝜃) = 𝛽𝐻𝑆𝐻 + 𝛽𝐻𝑆𝐻

𝐼𝑀

𝐼𝐻
                                (8) 

𝐼𝑀
′

𝐼𝑀
+ 𝜇𝑚 = 𝛽𝑀(1 − 𝐼𝑀)

𝐼𝐻

𝐼𝑀
.                                                             (9) 

Putting (8) and (9) in (7) and (6) respectively, we get 

 𝑘1 = −𝛽𝐻(𝐼𝐻 + 𝐼𝑀) +
𝐼𝐻
′

𝐼𝐻
− (𝜇ℎ + 𝛿) ≤

𝐼𝐻
′

𝐼𝐻
− (𝜇ℎ + 𝛿) 

 𝑘2 = −𝛽𝑀𝐼𝑀 +
𝐼𝐻
′

𝐼𝐻
− (𝜇ℎ + 𝛿) ≤

𝐼𝐻
′

𝐼𝐻
− (𝜇ℎ + 𝛿). 

Hence, from (5) 

 𝜇(𝐵) ≤
𝐼𝐻
′

𝐼𝐻
− (𝜇ℎ + 𝛿) and so,  

1

𝑡
∫ 𝜇(𝐵)𝑑𝑠 ≤

1

𝑡

𝑡

0
log𝑒

𝐼𝐻
′

𝐼𝐻
− (𝜇ℎ + 𝛿). 

So, 𝑞̅2 < 0, and hence the Bendixson criteria is also satisfied, 

which thus proves the global stability of the endemic 

equilibrium. 

 

NUMERICAL SIMULATIONS AND EFFECT OF 

PARAMETERIC VALUES: 

In this section, using Runge-kutta-Fehlberg method of order 4 

and 5 in MATLAB, we numerically simulate our system with 

the parametric values as given in Table 2 when R0 < 1 & 

Table 3 when R0 > 1 and establish the stability of models by 

taking different examples.  

 

Table 2: Parametric values for Zika virus modelwhen 𝐑𝟎 < 𝟏. 

Parameter Value Parameter Value 

𝛽𝐻 0.004 𝜂 0.2 

𝛽𝑀 0.01 𝜃 0.1 

𝛿 0.6 𝜇ℎ 0.6 

𝐵𝐻  0.8 𝜇𝑚 0.4 

𝐵𝑀  0.7 𝜇𝑧 0.3 

 

Table 3: Parametric values for Zika virus model when 𝐑𝟎 > 𝟏. 

Parameter Value Parameter Value 

𝛽𝐻 0.5 𝜂 0.5 

𝛽𝑀 0.7 𝜃 0.1 

𝛿 0.9 𝜇ℎ 0.4 

𝐵𝐻  0.8 𝜇𝑚 0.8 

𝐵𝑀  0.7 𝜇𝑧 0.9 
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Example 1: Consider the system (1) with initial 

conditions 𝑆𝐻 = 9999, 𝐼𝐻 = 1000, 𝑅𝐻 = 100, 𝑆𝑀 = 4999, 

𝐼𝑀 = 100 and the parametric values as shown in Table 2. The 

simulation results are shown in figure 2, which illustrates the 

behavior of Susceptible, Infected, Recovered classes for 

human population and Susceptible, Infected classes for 

mosquito population. These are initially positive in the region 

of admissible values and asymptotically approach to the 

disease free equilibrium for 𝑅0 = 0.0066 < 1. 

 

Figure 2: Comparison of all classes for human and mosquito 

population. 

 

Example 2: Consider the system (1) with initial 

conditions 𝑆𝐻 = 9999, 𝐼𝐻 = 100, 𝑅𝐻 = 100, 𝑆𝑀 = 999, 

𝐼𝑀 = 100  and the parametric values as shown in Table 2. We 

simulate between infected humans versus recovered humans 

when 𝜂 = 0.2, 𝜂 = 0.25, 𝜂 = 0.3, 𝜂 = 0.35, 𝜂 = 0.4,  𝜂 =
0.45, 𝜂 = 0.5 and 𝜂 = 0.55, then the basic reproduction 

numbers are 𝑅0 = 0.019, 𝑅0 = 0.020, 𝑅0 = 0.021, 𝑅0 =
0.022, 𝑅0 = 0.024, 𝑅0 = 0.025, 𝑅0 = 0.027 and 𝑅0 = 0.028 

respectively as shown in figure 3. From figure 3, we observe 

that the nature of trajectory tends to disease-free equilibrium 

point in infected-recovered phase plane, which shows the 

global stability of disease-free equilibrium point,  

when 𝑅0 < 1. 

 

Figure 3: Infected-recovered phase plane when R0 < 1. 

Example 3: To show the global stability of endemic 

equilibrium point, when 𝑅0 > 1, we consider the global 

dynamics of the infected human-infected mosquito plane and 

try to understand the nature of the trajectory towards the 

endemic equilibrium point. Consider the system (1) with three 

initial conditions of different Susceptible humans 𝑆𝐻 =
9899, 𝑆𝐻 = 9099, 𝑆𝐻 = 8099 and  𝐼𝐻 = 50, 𝑅𝐻 = 10, 𝑆𝑀 =
999, 𝐼𝑀 = 50 and with parametric values as shown in Table 

2. From figure 4, we observe that the nature of trajectory is 

steady spiral tends to endemic equilibrium point from any 

three initial point in infected human-infected mosquito plane, 

which shows the global stability of endemic equilibrium point, 

when 𝑅0 = 1.399 > 1. 

 

Figure 4: Infected human-infected mosquito plane 

when R0 > 1. 

 

Example 4: To compare the number of susceptible humans 

with the number of infected humans when 𝑅0 > 1, we 

consider the system (3) with initial conditions 𝑆𝐻 = 9999, 

𝐼𝐻 = 50, 𝑅𝐻 = 10, 𝑆𝑀 = 999, 𝐼𝑀 = 50 and the parametric 

values of Table 3. The simulation result is shown in figure 5, 

which illustrates that total numbers of susceptible humans get 

infected with Zika virus and the total number of infected 

humans increase to 𝐼𝐻 = 9999 when  𝑅0 = 1.399 > 1. From 

the peak, the infected class decreases because there are no 

susceptible humans to be infected. The rank correlation co-

efficient between susceptible and infected humans are equal to 

-0.0378. This means that when the number of infected human 

increases, the number of susceptible human decreases and 

vice-versa. 
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Figure 5: Comparison between susceptible and infected 

human when 𝑅0 > 1. 

 

Example 5: To compare the number of recovered humans with 

the number of infected human when 𝑅0 > 1, we consider the 

system (1) with initial conditions 𝑆𝐻 = 9999, 𝐼𝐻 = 50, 𝑅𝐻 =
10, 𝑆𝑀 = 999, 𝐼𝑀 = 50 and the parametric values of Table 3. 

The simulation result is shown in figure 6. From figure 6, it is 

clear that number of recovered human increases for short time 

period and again becomes susceptible human. Hence the total 

recovered humans become susceptible and finally total 

numbers of susceptible humans get infected with Zika virus 

and the total number of infected human increase to 𝐼𝐻 = 9999 

when  𝑅0 = 1.399 > 1. From the peak, the infected class 

decreases because there are no susceptible humans to be 

infected. The rank correlation co-efficient between recovered 

and infected humans are equal to -0.1993.  

 

Figure 6: Comparison between infected and recovered human 

when 𝑅0 > 1. 

Example 6: Consider the system (1) with initial 

condition 𝑆𝐻 = 9999, 𝐼𝐻 = 100, 𝑅𝐻 = 100,  𝑆𝑀 = 999, 𝐼𝑀 =
100 and the parametric values as shown in Table 2. Figure 7 

shows the efficacy of personal protection from the 

mosquitoes, for different values of 𝛽𝐻. 

 

Figure 7: Efficacy of personal protection of human from 

mosquito 

 

Example 7: Consider the system (1) with initial 

conditions 𝑆𝐻 = 9999, 𝐼𝐻 = 100, 𝑅𝐻 = 100, 𝑆𝑀 = 999, 

𝐼𝑀 = 100 and the parametric values as shown in Table 2. 

Figure 8 shows the efficacy of personal protection from the 

pregnant women to newborn child for different values of 

vertical transmission 𝜃. 

 

 

Figure 8: Efficacy of personal protection from pregnant 

women to child. 

 

DISCUSSION AND CONCLUSION 

The basic reproduction number of the model  

𝑅0 =
𝛽ℎ𝜇ℎ

2+√𝜇𝑚𝛽𝐻
2+4(𝜇ℎ+𝜇𝑧+𝜂)𝛽𝑀

2

2𝜇𝑚
2 (𝜇ℎ+𝜇𝑧+𝜂)

 is found and shown that the 

model is globally asymptotically stable at disease-free 

equilibrium when 𝑅0 < 1. We proved the global stability of 

endemic equilibrium of the model using geometric approach 

with the Bendixson criteria when 𝑅0 > 1. We also illustrate 

the analytical results numerically. If  𝑅0 < 1, that means that 

an infective with Zika virus replaces itself by less than one 
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new infective with Zika virus and the disease dies out. 

Furthermore, the susceptible proportion approaches one 

because everyone is susceptible when the disease has died out 

and the entire removed human beings who immune have died. 

If 𝑅0 > 1 and the initial proportion of susceptible 𝑆 = 𝑆𝐻 +
𝑆𝑀 satisfies 𝑆𝑅0 > 1, then proportion of susceptible 𝑆 

decreases and the infection proportion 𝐼 = 𝐼𝐻 + 𝐼𝑀 increases. 

The infection proportion 𝐼 increases to peak, then decreases 

due to lack of sufficient susceptible to be infected. Due to 

births of new susceptible, when the susceptible proportion is 

larger and the secondary epidemic is smaller, then the 

solutions are spiral to endemic equilibrium as shown in figure 

3 and figure 4. The comparisons between susceptible human 

class versus infected human class and infected human class 

versus recovered human class are shown in figure 5 and figure 

6 respectively when 𝑅0 > 1.  The efficacy of personal 

protections in infected human is shown in figure 7. Figure 8 

shows that the efficacy for pregnant women to newborn child 

by taking personal protection, which may include N,N-

diethyl-m-toluamide (DEET), can be used on children aged  

greater than 2 months and on a precaution basis pregnant 

women should not travel to any area where Zika virus 

transmission is present. 
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APPENDIX A:  

In this appendix, we discuss in brief the geometric approach to global stability problems, developed by Li and Muldowney [18]. 

Consider an autonomous dynamical system 𝑌̇ = 𝑓(𝑌) , where 𝑓(𝑌) ∈ ℝ𝑛is 𝐶1 function of Y in open subset Ω of ℝ𝑛. 

Assumptions of two hypotheses: 

H1 : There exists a compact absorbing set K in Ω. 

H2 : Above dynamical system has unique equilibrium 𝑌̅ in Ω. 

Define 𝑞̅2 = 𝑙𝑖𝑚𝑡→∞
𝑠𝑢𝑝

max
𝑦0∈Ω

1

𝑡
∫ 𝜇 (𝐵(𝑦(𝑠, 𝑦0))) 𝑑𝑠

𝑡

0
, where the Lozinskii measure of matrix B is defined as 𝜇(𝐵) = lim

ℎ→0

|𝐼+ℎ𝐵|−1

ℎ
. 

Theorem: If the system satisfy the above hypothesis H1-H2 and 𝑞̅2 < 0, then the unique equilibrium 𝑌̅ is globally stable in 𝛺. 

 


