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Abstract 

In industrial processes, the lifetime performance index LC  is 

presented as a popular means to assess the performance and 

potential of their processes. An adaptive hybrid Type-II 

progressive censoring scheme as a mixture of Type-I and 

Type-II progressive censoring schemes. In this article, 

Bayesian and non-Bayesian estimation of LC  under an 

adaptive hybrid Type-II progressive censoring scheme when 

the lifetimes of products are independent exponential 

distribution. The maximum likelihood confidence interval and 

Bayes credible interval of LC   are developing. The behavior 

of the confidence interval and credible interval for the 

parameter  LC  given a significance level is investigated with 

two illustrative examples. Monte Carlo simulation is then 

utilized to assess the behavior of the lifetime performance 

index LC . 
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indices; Adaptive hybrid Type-II progressive censored 
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INTRODUCTION 

In modern enterprises, assessment of quality performance for 

products is important, hence process capability analysis is an 

effective means of measuring process performance and 

potential capability. In the service (or manufacturing) 

industry, process capability indices are utilized to assess 

whether product quality meets the required level. 

Montgomery [1] proposed the process capability index LC  

(or PLC ) for evaluating the lifetime performance of 

electronic components, where L  is the lower specification 

limit, since the lifetime of electronic components exhibits the 

larger-the-better quality characteristic of time orientation. 

Tong et. al. [2] constructed a uniformly minimum variance 

unbiased estimator (UMVUE) of LC  under an exponential 

distribution. Moreover, the UMVUE of LC  is then utilized 

to develop the confidence interval. The purchasers can then 

employ the testing procedure to determine whether the 

lifetime of electronic components adheres to the required 

level. Manufacturers can also utilize this procedure to enhance 

process capability. All of the above process capability indices 

(PCIs) have been developed or investigated under normal 

lifetime model or exponential lifetime model. Nevertheless, in 

many processes including manufacturing processes and 

service processes, the assumption of normality is common in 

process capability analysis, and is often not valid. Therefore, 

the lifetime model of many products generally may possess a 

non-normal distribution including two-parameters exponential 

(Wu et al. [3]), Burr XII model (Lee et al. [4]), Rayleigh (Lee 

et al. [5]), Weibull (Ahmadi et al. [6]). 

Censoring is very common in life tests. There are several 

types of censored tests. The most common censoring schemes 

are Type-I (time) censoring, where the life testing experiment 

will be terminated at a prescribed time T , and Type-II 

(failure) censoring, where the life testing experiment will be 

terminated upon the 
thr ( r is pre-fixed) failure. However, the 

conventional Type-I and Type-II censoring schemes do not 

have the flexibility of allowing removal of units at points 

other than the terminal point of the experiment. Because of 

this lack of flexibility, a more general censoring scheme 

called progressive Type-II right censoring, for extensive 

reviews of the literature on progressive censoring see 

Balakrishnan and Aggarwala [7]. Kundu and Joarder [8] 

proposed a censoring scheme called Type-II progressive 

hybrid censoring scheme, in which a life testing experiment 

with progressive Type-II right censoring scheme 

,( 1RR ,2R ..., )mR   is terminated at a prefixed time T . 

However, the drawback of the Type-II progressive hybrid 

censoring, similar to the conventional Type-I censoring (time 

censoring), is that the effective sample size is random and it 

can turn out to be a very small number (even equal to zero), 

and therefore the standard statistical inference procedures may 

not be applicable or they will have low efficiency. Ng et al.[9] 

suggested an adaptive Type-II progressive censoring, in this 

censoring, a properly planned adaptive progressively censored 

life testing experiment can save both the total test time and the 

cost induced by failure of the units and increase the efficiency 

of statistical analysis. 
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Suppose n  units are placed on a life testing experiment and 

let  ,1T ,2T  ..., nT   be their corresponding lifetimes. We 

assume that  ,iT  ,1i ,2 ..., n   are independent and 

identically distributed with probability density function (pdf) 

)(tf  and cumulative distribution function (cdf) )(tF . Prior 

to the experiment, an integer  nm   is determined and the 

progressive Type-II censoring scheme 

,( 1RR ,2R ..., )mR  with 0iR  and i

m

i

Rmn
1

   

is specified. During the experiment, the i -th failure is 

observed and immediately after the failure, iR  function 

items are randomly removed from the test. We denote the 

m completely observed (ordered) lifetimes by  

,::

R

nmiT mi ,...,2,1  , which are the observed 

progressively Type-II right censored sample. For 

convenience, we will suppress the censoring scheme in the 

notation of the  nmiT :: . We also denote the observed values 

of such a progressively Type-II right censored sample by  

 nmnm tt ::2::1  ... .:: nmmt   

Suppose the experimenter provides a time    , which is an 

ideal total test time, but we may allow the experiment to run 

over time    . If the  m -th progressively censored 

observed failure occurs before time   (i.e.  nmmT ::  

), the experiment stops at the time  nmmT :: . Otherwise, 

once the experimental time passes time     but the number 

of observed failures has not reached m , we would want to 

terminate the experiment as soon as possible. This setting can 

be viewed as a design in which we are assured of getting  m   

observed failure times for efficiency of statistical inference 

and at the same time the total test time will not be too far 

away from the ideal time   . From the basic properties of 

order statistics (see, for example, David and Nagaraja [10], 

Section 4.4), we know that the fewer operating items are 

withdrawn (i.e., the larger the number of items on the test), the 

smaller the expected total test time. Therefore, if we want to 

terminate the experiment as soon as possible for fixed value of 

m , then we should leave as many surviving items on the test 

as possible. 

Suppose  J   is the number of failures observed before time  

T  , i.e.  

mJTT nmJnmJ ,...,2,1   ,::1::    

where  0,;0 nmT   and   nmmT ,;1  . According to the 

above result on stochastic ordering of first order statistics 

from different sample sizes, after the experiment passed time 

  , we set  1JR  … 01  mR   and 

i

J

i
m RmnR

1

  . This formulation leads us to terminate 

the experiment as soon as possible if the  )1( J -th  failure 

time is greater than  for  mJ 1 . The value of     

plays an important role in the determination of the values of  

Ri   and also as a compromise between a shorter 

experimental time and a higher chance to observe extreme 

failures.  

 

 

                                                              T 
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One extreme case is when   , which means time is not 

the main consideration for the experimenter, then we will 

have a usual progressive Type-II censoring scheme with the 

pre-fixed progressive censoring scheme  

),...,,( 21 mRRRR . Another extreme case can occur when 

0 , which means we always want to end the experiment 

as soon as possible, then we will have 1R  … 01  mR   

and  mnRm    which results in the conventional 

Type-II censoring scheme. Figure (1) gives the schematic 

representation of this situation. 

Given  J  , the likelihood function is given by 

1 2 1 2

1

1

R R R

R R i i

, ,...,m ;m,n ;m,n m;m,n
m

R

i;m,n i;m,n

i

f ( t ,t ,...,t )

A f ( t )[ F( t )] ,




 
(1) 

,...0 ,;,;2,;1  RRR

nmmnmnm ttt  

where 

 

,1
,1min

11









 





i

Ji

i

m

i

RinA    (2) 

and 
























 

J and  if

 if0

 if1

1

mmi

miJ

Ji

m

Rj
J

j
mn

R

i    (3) 

The rest of this paper is organized as follows. In Section 2, we 

introduces some properties of the lifetime performance index 

for lifetime of product with the NDBS based on the 

progressively Type II censored sample and discusses the 

relationship between the lifetime performance index and 

conforming rate. Section 3 then presents the ML and Bayes 

estimators of the lifetime performance index and its statistical 

properties. Section 4 develops a lower bound for the lifetime 

performance index CL . Two numerical examples and 

concluding remarks are made in Sections 5. Sensitivity study 

via a Monte Carlo method are conducted in Section 6. 

 

THE LIFETIME PERFORMANCE INDEX 

Suppose that the lifetime ( T ) of products has the 

two-parameter exponential distribution with the probability 

density 

,0 ,   ),exp(
1

)( 


 





t

t
tf   (4) 

where     and     are the threshold parameter (or shift 

parameter, or guarantee time, or minimum life) and the scale 

parameter, respectively. 

By using the transformation Y T  -  , and the distribution 

of Y has a one-parameter exponential distribution with the 

p.d.f. and c.d.f. as 

1
1 0 0 and   

y y
f ( y ) exp( ) F ( y ) exp( ), y , .y y 

  
        (5) 

Hence, if  RRR

nmmnmnm ttt ,;,;2,;1 ...   is an adaptive Type-II 

progressive censored sample from the two-parameter 

exponential distribution with p.d.f. as (4), then the new 

lifetimes  
nmiY ,;

  = 

R

nmiT ,;1

R

nmT ,;1
, ,1i    ,2  ..., 1m   

can be treated as an adaptive Type-II progressive censored 

sample of size  1m   from the one-parameter exponential 

distribution with the p.d.f. and c.d.f. as (5), respectively. So, in 

this paper we shall use one-parameter exponential distribution 

instead of two-parameter exponential distribution. 

To assess the lifetime performance of products, LC  can be 

defined as the lifetime performance index. Suppose that the 

lifetime of products may be modeled by a (4). Let T  denote 

the lifetime of such a product and T has the two-parameter 

exponential distribution with the p.d.f. is given as (4). Clearly, 

a longer lifetime implies a better product quality. Hence, the 

lifetime is a larger-the-better type quality characteristic. The 

lifetime is generally required to exceed  L   unit times to 

both be economically profitable and satisfy customers. 

Montgomery [1] developed a capability index  LC  for 

properly measuring the larger-the-better quality characteristic.  

LC   is defined as follows: 



 L
CL


                         (6) 

where the process mean    , the process standard deviation 

 , and L  is the lower specification limit. To assess the 

lifetime performance of products, LC  can be defines as the 

lifetime performance index. 

Under T  has the two-parameter exponential distribution and 

the data transformation Y =T  -  , 0 , the distribution 

of Y  is an exponential distribution (5). Moreover, there are 

several important properties, as follows: 

1. The lifetime performance index  LC  can be rewritten as 

,1- ,1 













 LL C

LLL
C








 (7) 

where the process mean   = E( Y ) =  , the process 

standard deviation  = )(Var Y =  , and L  is the lower 

specification limit. 

2. The failure rate functions of  Y   is given by 

.
1

)(


yr         (8) 

When the mean new lifetime of products  L , then the 
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lifetime performance index  LC  0. From Eqs. (6) and (8), 

we can see that the larger the    , the smaller the failure rate 

and the larger the lifetime performance index  CL  . 

Conversely, when   L  , then  LC 0 , thus the smaller 

the  , the larger the failure rate and the smaller the lifetime 

performance index LC . Therefore, the lifetime performance 

index  LC   reasonably and accurately represents the lifetime 

performance of products. If the new lifetime of a product 

exceeds the lower specification limit  L  , then the product is 

labeled as a conforming product. Otherwise, the product is 

labeled as a non-conforming product. 

The ratio of conforming products is known as the conforming 

rate which can be defined as 

.1- ),1exp()exp()Pr(Pr  LL CC
L

LY


  (9) 

Obviously, a strictly increasing relationship exists between 

conforming rate Pr and the lifetime performance index  LC  , 

then Table 1 lists various values of  LC   and the 

corresponding conforming rates  Pr  . The  LC   values 

which are not listed in Table 1, the conforming rate  Pr   can 

be calculated by Eq. (9). Since an one-to-one mathematical 

relationship exists between the conforming rate Pr and the 

lifetime performance index  LC . Therefore, utilizing the 

one-to-one relationship between Pr and  LC  , lifetime 

performance index can be a flexible and effective tool, not 

only evaluating product quality, but also for estimating the 

conforming rate  Pr  . 

Table 1: The lifetime performance index LC is the 

corresponding conforming rate Pr . 

LC  Pr  
LC  Pr  

LC  Pr  
LC  Pr  

-   0.00000 -0.5 0.22313 0.35 0.52205 0.70 0.74082 

-10 0.00002 0.00 0.36788 0.40 0.54881 0.75 0.77880 

-8 0.00012 0.05 0.38674 0.45 0.57695 0.80 0.81873 

-6 0.00091 0.10 0.40657 0.50 0.60653 0.85 0.86071 

-4 0.00674 0.20 0.44933 0.55 0.63763 0.90 0.90484 

-2 0.04979 0.25 0.47237 0.60 0.67032 0.95 0.95123 

-1 0.13534 0.30 0.49659 0.65 0.70469 1.00 1.00000 

 

ESTIMATION OF LIFETIME PERFORMANCE INDEX 

Maximum likelihood estimator of lifetime performance 

index 

In lifetime testing experiments of products, the experimenter 

may not always be in a position to observe the lifetimes of all 

the items on test due to time limitation and/or other 

restrictions (such as money, material resources, mechanical or 

experimental difficulties) on data collection. Therefore, 

censored samples may arise in practice. In this paper, we 

consider the case of an adaptive Type-II progressive censoring 

scheme. An adaptive Type-II progressive censoring scheme is 

quite useful in many practical situations. where budget 

constraints are in place or there is a demand for rapid testing. 

Let T  denote the lifetime of such a product and  T   has 

the two-parameter exponential distribution with the p.d.f. is as 

(4). With an adaptive Type-II progressive censoring,  n   

units are placed on test. Consider that  
RRR

nmmnmnm TTT ,;,;2,;1 ...   is the corresponding an 

adaptive progressively Type II censored sample, with 

censoring scheme  },...,,{ 21 mRRRR  . By using the 

transformation  iY  
R

nmiT ,;1  -  .,;1

R

nmT   Hence the joint 

p.d.f. of  121 ...  mYYY   is given by (1). So, the 

likelihood function is given by 

  ,)1(exp)
1

(y| 11

1

1

1









 













 i
ii

m

i

m y
RAL   (10) 

where A  and i  as given by (2) and (3), we used iY  

instead of  
R

nmiY ,;  . The logarithm of the likelihood function 

 may then be written as 

 





 i
ii

m

i

y
Rm )1()

1
log()1(Alogy| 11

1

1

 





  (11) 

Calculating the first partial derivatives of (11) with respect to  

   and equating each to zero, we get the ML estimator of  

   as 

,
1

))(1(
1

1

))(1(
1

1
)1(

1

1ˆ

1

2

1111

1

1

11

1

1

































m

W
ttR

m

ttR
m

yR
m

iii

m

i

iii

m

i

iii

m

i




 (12) 

where 

).)(1( 1

2

ttRW iii

m

i




       (13) 

By using the invariance property of ML estimators see Zehna 

[11], the ML estimator of  LC   is given by 

.

))(1(

)1(
1

)1(
1

ˆ
1ˆ

1
2

ttR

Lm

W

LmL
C

iii

m

i

L












 (14) 

Theorem 1: Let  
R

nmiT ,;  ,  ,1i ,2  . . . , m   be an 

adaptive progressive Type II censored order statistic from 

two-parameter exponential distribution (4) with censored 

scheme R . Then 
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,
2 2

))1(2(1  m

W



    (15) 

where  W   given by (13) 

Proof let  .1,...,1,,;1,;1 
 miZ nmnmi TT

i 

RR

  It can be seen 

that  1Z 2Z  . . .
1mZ   is an adaptive progressive 

Type II censored order statistic from standard exponential 

distribution. Consider the following transformation 

  














,2

,)1(

1222112

1111

ZZRRnU

ZRnU





  (16) 

The generalized spacing’s  121 ,...,, mUUU   are 

independent and identically distributed as standard 

exponential distribution, see Tomas and Wilson [12]. Hence, 

,
2

)1(2)1(22 1

2

11

1

1

1

1 


W
ZRZRU iii

m

i

iii

m

i

i

m

i

 















 

 (17) 

has a chi-squared distribution with 2 1( m ) degrees of 

freedom 

Remark 1. The expectation of  ĈL   can be derived as 

follows 

.
)2(

)1(
1)

2
(E

)1(2
1)ˆ(E









m

Lm

W

Lm
CL






  (18) 

The ML estimator LĈ  is not an unbiased estimator of  CL . 

But when m  , E )ˆ( LC     LC , so the ML 

estimator LĈ is asymptotically unbiased estimator. Moreover, 

we also show that  LĈ  is consistent. 

 

Bayes estimator of lifetime performance index 

The Bayesian approach provides the methodology for 

incorporation of previous information with the current data. 

Waller et al. [13] presented a method by which engineering 

experiences, judgments, and beliefs can be used to assign 

values to the parameters of gamma prior distribution . In this 

paper, we considered     is a random variable having the 

conjugate inverted gamma prior distribution 

 
),exp()(

1 


bb
aa

a 






   (19) 

where the parameters a and b are obtained from the past 

history. From (10) and (19), we can derive the posterior 

distribution of     is given by 

 
.

)1(
exp

1

)1(

)(
1

1

1

1

1

1

1






















































byR

am

byR
iii

m

i

am

am

iii

m

i  (20) 

By consider a squared-error loss function,   ( , ̂ ) = ( ̂  

-  ) 
2

, then the Bayes estimator of     is the posterior 

mean 

 

1

1
1

1
2

1

1

1

1 1

E

m

i i i
i

m

i i i
i

( R )y b
| ( )

m a

( R )( t t ) b W
,

m a m a


   












  
 

 

   
 
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where  

.))(1( 1

2

bttRW iii

m

i




     (23) 

Hence, the Bayes estimator  LC
~

  of  LC   can be written 

by using (7) and (20) as 

 
bttR

Lam
CEC

iii

m

i

LL








))(1(

)1(
1)(|

~

1
2



   (24) 

Theorem 2: Let  
R

nmiT ,; , ,1i 2,  . . . , m  be an adaptive 

progressive Type II censored order statistic from 

two-parameter exponential distribution (4) with censored 

scheme R . Then 

 

,
2 2

))1(2(1 



 am

W



 (24) 

where  
W   given by (22) 

Proof Let Z= 

W2   by using the change of variables (see 

Casella and Berger [14]), then we obtain that the p.d.f. of Z is 

given by 

 
,

2
exp

2
||||)

2
()(

2

)1(2

1

2

)1(2

2

)1(2






















zz
I

z

W
zf

am
zZ am

am

  (25) 

hence,  .2

))1(2(1
2




am
W


   

Remark 2. The expectation of  LC
~

  can be derived as 

follows 

.
2

)1(
1)

2
(E

)1(2
1)

~
(E









 am

Lam

W
L

Lam
CL




 (26) 
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The Beyas estimator  LC
~

  is not an unbiased estimator of  

LC  . But when  m  , E )
~

( LC     LC  , so the 

Beyas estimator  LC
~

 is asymptotically unbiased estimator. 

Moreover, we also show that LC
~

is consistent. 

 

CONFIDENCE INTERVAL FOR LC   

In this section, to determine whether the lifetime performance 

index of products meets the predetermined level, we obtained  

)%1(100    lower bound for  LC   by using the ML and 

Bayes estimator given by (14) and (23), then based on this 

lower bound, a hypothesis testing procedure is developed. 

Assuming that the required index value of lifetime 

performance is larger than  c  , where c denotes the target 

value, the null hypothesis   :0H LC  c   and the 

alternative hypothesis   :1H    LC    c   are 

constructed. 

In the Bayesian approach, given the specified significance 

level    , the level 100(1 -    )% one-sided credible 

interval for  LC   can be derived as follows: 

Since the pivotal quantity  
2

)1(2
2




am
W    and CHIINV (1 

-    , 2( 1 am  )) represents the lower 1 -     

percentile of  
2

)1(2 am   

,
)1(2

))1(2,1(CHIINV)1
~

(
1

2

))1(2,1(CHIINV
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


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
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
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






 
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



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
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
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









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(27) 

where  LC
~

  is given by (23). From (27), we obtain that a 

lower bound for  LC   is 

)1(2

))1(2,1(CHIINV)1
~

(
1BB






am

amC
L L 

  (28) 

where  LC
~

  denotes the Bayes estimator of  LC  ,     is 

the specified significance level,  m   is the number of 

observed failures before termination and  a   is a parameter 

of prior distribution. 

In the non-Bayesian approach, by using the MLE  .ˆ
LC   

Since   R

nmT ,;1   is known and by Remark 1 and CHIINV 

( 1  ,  )1(2 m  ) represents the lower  1   

percentile of  
2

))1(2(1  m  , then 

,
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
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(29) 

or a  )%1(100    lower bound for  LC   is 

.
)1(2

)2,1(CHIINV)1ˆ(
1BML






m

mC
L

yL 
   (30) 

The managers can then employ the one-sided hypothesis 

testing to determine whether the lifetime performance index 

adheres to the required level. The proposed testing procedure 

about  LC   can be organized as follows: 

1) From the observed adaptive progressively Type II 

censored data ( R

nmt ,;1 R

nmt ,;2
. . . ),;

R

nmmt   from 

the two-parameter exponential distribution ,   we can 

obtained   121  ..., , , myyy   from the one-parameter 

exponential distribution, by using transformation  

iY = .,;1,;1

RR

nmnmi TT    

2) Determine the lower lifetime limit  L   with the new 

lifetimes, for products and performance index value c, 

then the testing null hypothesis  0H  :  cCL    and 

the alternative hypothesis  1H  :  cCL    is 

constructed. 

3) Specify a significance level    . 

4) Calculate the value of test statistic  LĈ   and  LC
~

  

using (14) and (23). 

5) Calculate the value of lower bound  
L

BML   and  BBL   

for  CL   from (28) and (30). 

6) The decision rule of statistical test is provided as follows: 

If  c     [ BBL  ,   ) or  c     [ BMLL  ,   ), we 

reject the null hypothesis and it is concluded that the 

lifetime performance index of product meets the required 

level. 
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Table 2: An adaptive progressive Type II censored order statistic from (5). 

  1 2 3 4 5 6 7 8 9 10 11 12 

Case II yi,m ,n  
38 109 158 231 231 346 467 544 615 722 846 939 

Case III yi,m ,n  
38 109 158 231 346 467 544 615 722 846 1020 1301 

 

Table 3: Test statistic, one-sided confidence interval and cases of test 

 

Cases 
 ĈL  [ LB ,      ) H0  :  CL   0.80 H1  :  CL   >  0.  80 

I 0 0.9470 
[0.9357 ,    )  

reject Accept 

II 500 0.9379 
[0.9058 ,    )  

reject accept 

III 1000 0.9493 
[0.9231 ,    )  

reject accept 

 

ILLUSTRATIVE EXAMPLES 

In this section, we propose the new hypothesis testing 

procedure to a practical data set (Lawless [15] and Lawless 

[16]) on the mileages at which n  19 military personnel 

carriers failed in service. There is no censoring ( mn   ), 

and the mileages ( t i, ,1i ,2 . . . , 19  ) are 162, 200, 271, 

320, 393, 508, 539, 629, 706, 777, 884, 1008, 1101, 1182, 

1463, 1603, 1984, 2355, 2880. The data set has been checked 

that exponential model is correct ( Wu et al. [17]). In addition, 

a probability plot of the values  iY 1iT - ,1T  

,1i ,2 ..., 1n   indicates that an exponential model is 

consistent with the data (Lawless [16]). The lower lifetime 

limit is assumed to be  yL  47.5258. To deal with the 

product managers concerns regarding lifetime performance, 

the conforming rate  Pr   of products is required to exceed 

80. Referring to Table 1, the value is required to exceed 0.80. 

Thus, the performance index value is set at  c  =0.80. The 

testing hypothesis  0H  : 
yLC  0.80  and the alternative 

hypothesis  1H  : 80.0
yLC  is constructed. In our 

example we have used three cases. 

 0   and  16m  (the right Type II censored 

random sample Wu et al. [17]). 

 ,500  13m   and  R  {2, 0, 0, 1, 0, 0, 1, 0, 0, 

0, 2, 0, 0}, the corresponding adaptive Type-II 

progressive censoring data are given in Table 3. 

 1000,  13m   and R  {2, 0, 0, 1, 0, 0, 1, 0, 0, 

0, 2, 0, 0}, the corresponding adaptive Type-II 

progressive censoring data are given in Table 3. 

Since we do not have any prior information and to find the 

Bayes estimates, small values are given to the gamma hyper 

parameters to reflect vague prior information. Namely, we 

assumed that  a   = b  = 0.0001. Hence the results in the 

Bayesian and non-Bayesian are conforming. Referring to 

Table ,3 we reject to the null hypothesis  0H : LC  0.80. 

Thus, we can conclude that the lifetime performance index of 

military personnel carriers failed in service meets the required 

level. 

 

SIMULATION STUDY 

In this section, we conducted some of simulation study for 

confidence level (1 - ) based on one-sided credible and 

confidence intervals of the lifetime performance index LC . 

We consider    = 0.05 and without loss of generality  

  =3 ,   5. We used different sample sizes ( n  ), different 

effective sample sizes ( m  ), different hyperparameters 

(prior 1:  ,1 ba  prior 2:  2a  , b=3  and prior 3: 

5a b    ) and different sampling schemes (i.e., different  

R   values). The lower lifetime limit  Lx   is assumed to be 

0.2. The Monte Carlo simulation algorithm of confidence 

level (1 -   ) is given in the following steps: 

1) Generate an adaptive Type-II progressive censored data  

t1;m ,n , t2;m ,n , . . . , tm ;m ,n   from exp(1.0, 0.5) using 

the algorithm proposed by Ng et al. [1] then by 

transformation  iY     1iT   -  T1  , the values (y1;m ,n ,    

y2;m ,n ,    . . . ,    ym1;m ,n  ) are obtained. 

2) The 95 %   lower bounds  
L

BML   and  
L

BB   are 

calculated from (28) and (30 ). 

3) If  CLy  > BMLL   then Count Q1 = 1 else Count Q1 = 0. 

4) If  CLy   > BBL   then Count Q2 = 1 else Count Q2 = 0. 

5) Steps 2--5 are repeated 100 times. 

6) The ML estimation of confidence level (1 -   ) is (1 - ̂ ) 
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=  
100

Q1 TotalCount
  for one-sided confidence interval. 

7) The Bayes estimation of confidence level (1 -   ) is  

(1-   )   =  
100

Q2 TotalCount
  for one-sided credible 

interval. 

8) Repeat steps 2--7 1000 times, then we can get the 1000 

estimations of confidence level as follows: (1 - ̂  ) 1  , 

 (1 - ̂  ) 2  , ..., (1 -  ̂ ) 1000   

9) Calculate the average empirical confidence level 

10) ,)ˆ1(
1000

1
)ˆ1(Average

1000

1

i

i

  


  (31) 

11) and the sample mean square error (SMSE) 

12)   ,)1()ˆ1(
1000

1
)ˆ1(SMSE

2
1000

1

  


i

i

(32) 

13) for one-sided confidence interval and one-sided credible 

interval, respectively. 

Table 4  Average empirical confidence level (1 -  ) for  

CL   when    = 0.05 and T={4,7} 

 

   
1 4   2 7   

n m C.S. MLE Bayes MLE Bayes 

    a  =0.5,  b  =0.5 
 a  =0.5,  b  =0.5 

30 15 (15, 0, ..., 0) 0.955(0.00045) 0.960(0.00044) 0.951(0.00048) 0.958(0.00044) 

  (0, ..., 0, 15) 0.949(0.00050) 0.962(0.00048) 0.965(0.00049) 0.955(0.00050) 

  (0, ...,0,15,0
7

) 0.951(0.00048) 0.964(0.00046) 0.967(0.00056) 0.958(0.00051) 

  (1 
15

 ) 0.950(0.00057) 0.963(0.00053) 0.966(0.00045) 0.957(0.00045) 

 25 (5, 0
24

) 0.950(0.00056) 0.970(0.00052) 0.975(0.00049) 0.961(0.00050) 

  (0 
24

, 5) 0.950(0.00049) 0.971(0.00047) 0.977(0.00042) 0.962(0.00050) 

  (0 
12

,5,0 
12

) 0.951(0.00050) 0.972(0.00043) 0.977(0.00045) 0.963(0.00049) 

  ((1,0
4

)
5

) 0.948(0.00050) 0.958(0.00045) 0.960(0.00042) 0.953(0.00049) 

50 25 (25, 0
24

) 0.951(0.00044) 0.961(0.00045) 0.963(0.0005) 0.956(0.00042) 

  
(0 

24
, 25) 

0.950(0.00050) 0.959(0.00041) 0.962(0.00050) 0.954(0.00045) 

  (0 
12

,25,0 
12

) 0.953(0.00050) 0.963(0.00050) 0.965(0.00050) 0.958(0.00047) 

  (1
25

) 0.952(0.00045) 0.961(0.00050) 0.963(0.00048) 0.957(0.00043) 

 40 (10, 0
39

) 0.948(0.00045) 0.957(0.00042) 0.959(0.00040) 0.952(0.00045) 

  (0 
39

 , 10) 0.949(0.00047) 0.958(0.00041) 0.960(0.00045) 0.954(0.00047) 

  (0 
19

 ,10,0
20

) 0.949(0.00046) 0.958(0.00040) 0.959(0.00043) 0.953(0.00044) 

  ((1,0 
3

)
10

 ) 0.950(0.00045) 0.958(0.00041) 0.959(0.00044) 0.953(0.00043) 

 

CONCLUSIONS 

Process capability indices are widely used to measure the 

potential and performance of a process. Moreover, in life 

testing experiments, the experimenter may not always be in a 

position to observe the lifetimes of all products on test. The 

censoring scheme which can save both the total test time and 

the cost induced by failure of the units and increase the 

efficiency of statistical analysis. So, in this paper, we 

conducted an adaptive Type-II progressive censoring scheme 

to determine whether the lifetime performance index of 

products meets the predetermined level. A simulation study 

was conducted to examine and compare the performance of 

the proposed methods for different sample sizes, different 

censoring schemes and deferent values of   . From the 

results, we observe the following. 

The results of simulation are summarized in Table 4 for the 

different combination of  ,n ,m    R   and prior parameter 

( a , b ). From Table 6, based on L  = 0.2 and   = 0.05, the 

following points can be drawn. 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 15 (2018) pp. 12344-12352 

© Research India Publications.  http://www.ripublication.com 

12352 

1- For any  m  all of the average empirical confidence 

level (1 - )  very close to confidence level (1 - ). 

2- All of the average empirical confidence levels have 

very small MSE. 

3- The MSE for one-sided credible interval based on 

Bayes estimates are almost smaller than the MSE for 

one-sided confidence interval based on the MLE. 

4- The average empirical confidence levels have very 

small MSE for small values of  . 
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