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Abstract  

We study numerically the boundary-layer flow of a viscous 

fluid over a nonlinear axisymmetric stretchingsheet. With the 

help of similarity transformation, the governing partial 

differential equations are reduced to an ordinary differential 

equation. The resulting ordinary differential equation is solved 

using Quartic spline collocation method. The numerical 

solutions are obtained in the form of velocity profiles and skin 

friction for various values of parameters.  
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sheet, spline collocation, Quartic spline. 

 

INTRODUCTION 

The analysis of boundary-layer flow induced by a moving 

rigid surface due to Sakiadis [26] is well known. 

Suchboundary-layer behavior over a moving continuous 

surface is an important type of flow that occurs in 

severalengineering process. For example, materials 

manufactured by extrusion processes and heat-treated 

materialstraveling between a feed roll and a wind-up roll or on 

a conveyer belt possess the characteristics of a 

movingcontinuous surface. Crane [12] extended the analysis 

to flow induced by a stretching sheet. This problem haslater 

been extensively studied in various directions including 

Newtonian and non-Newtonian fluids, porousand nonporous 

space and hydrodynamic and magnetohydrodynamic (MHD) 

fluids. Some interesting recentinvestigations is mentioned in 

the references [5–9]. 

In all the aforementioned studies the flow is induced by a 

linear stretching sheet. In spite of the growingliterature on 

flow over stretching sheets and its obvious importance in the 

polymer and electrochemical industries,it is surprising to note 

that the corresponding analysis of nonlinear stretching sheet 

does not seem tohave received any adequate attention so far. 

Recently, Vajravelu [27] discussed the boundary-layer flow of 

aviscous fluid over a planar nonlinearly stretching sheet. He 

obtained the numerical solution of the problem. 

Here we analyze axisymmetric flow over a nonlinear 

stretching sheet numerically. By using the similarity 

transformation [10], the partial differential equation governing 

the flow are transformed to ordinary differential equation, 

which is solved numerically by using Quartic spline 

collocation method. The solutions are obtained in the form of 

stream function𝑓, velocity profile 𝑓′ and skin friction 𝑓′′(0), 

for different values of parameter involved. 

 

Figure 1. Geometry of the problem 

 

MATHEMATICAL FORMULATION: 

Consider the steady, laminar flow of a viscous fluid over a 

nonlinearly stretching sheet. The sheet is in the planez = 0 and 

the fluid occupies the half space z >0. For the mathematical 

modeling we take the cylindrical polarcoordinate system (r, θ, 
z) when flow occurs under the rotational symmetry. Thus all 

physical quantities areindependent of θ and the azimuthal 

component of velocity v vanishes identically. The schematic 

diagram ofthe considered geometry is given in Fig. 1. 

The equations which govern the axisymmetric flow of a 

viscous fluid are the full Navier–Stokes equationsand are 

given by 
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where ν = μ/ρ is the kinematic viscosity, ρ is the density, p is 

the pressure, and u and w are the velocities inthe r and z 
directions, respectively. Since the flow is caused only due to 

the stretching of the sheet thereforethe pressure gradient can 

be neglected. By applying the usual boundary-layer 
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approximations, the equationswhich govern the boundary-

layer axisymmetric flow of a viscous fluid are Eq. 1 and 

                            𝑢
𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
= 𝑣

𝜕2𝑢

𝜕𝑧2                                  (4) 

The boundary conditions are 

                           u = a𝑟𝑛, w=0 at z = 0, 

                            u →0 as z→∞.                                          (5)                 

in which a >0 is the stretching constant and n is a positive 

integer. Introducing the following similaritytransformations 

𝜂 = √
𝑎(𝑛 + 1)

2𝑣
𝑟

𝑛−1

2 𝑧𝑢 = 𝑎𝑟𝑛𝑓′(𝜂), 

        𝜔 = −𝑎𝑟
𝑛−1

2 √
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[
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2
𝑓(𝜂) +

𝑛−1

2
𝜂𝑓′(𝜂)]            (6) 

Eq. 1 is identically satisfied and Eq. 4 and conditions 5 gives 

the following equations. 

                      𝑓′′′ + (
3𝑛+1

𝑛+1
) 𝑓𝑓′′ − (

2𝑛

𝑛+1
) 𝑓′2 = 0                 (7) 

𝑓 = 0,   𝑓′ = 1   𝑎𝑡  𝜂 = 0 

                             𝑓′→0    as  𝜂 ⟶ ∞                                    (8) 

The physical quantity of interest is the skin friction coefficient 

𝐶𝑓 which is defined as 

                                    𝐶𝑓 =
𝜏𝑤

𝑝(𝑎𝑟𝑛)2                                     (9) 

where 𝜏𝑤is the shear stress at the wall and is given by 

                                    𝜏𝑤 = 𝜇
𝜕𝑢

𝜕𝑧
|

𝑧=0
                                 (10) 

Using Eq. 6, we get 

                                     𝑅𝑒𝑟

1

2𝐶𝑓 = 𝑓′′(0),                           (11) 

where 𝑅𝑒𝑟

1

2 = 2𝑎𝑟𝑛+1/(𝑛 + 1)𝑣is the local Reynolds 

number. Note that for n = 1 one obtains the case ofthe linear 

stretching sheet 

 

QUARTIC SPLINE COLLOCATIO : 

In this section, fourth-degree spline collocation is used to 

construct numerical solutions to boundaryvalue problems 

discussed in equation (7). A detailed description of spline 

functions generated by subdivision can be found in [17] 

Consider equally spaced knots of a partition 𝜋: 𝑎 = 𝜂0 < 𝜂1 <
⋯ < 𝜂𝑛 = 𝑏 on [a,b]. Let 𝑆4[𝜋] be the space of continuously 

differentiable, piecewise, Quartic polynomials on 𝜋. That is, 

𝑆4[𝜋] is the space of Quartic polynomials on 𝜋. The Quartic 

splines is given by 

  𝑆(𝜂) = 𝑎0 + 𝑏0(𝜂 − 𝜂0) +
1

2
𝑐0(𝜂 − 𝜂0)2 +
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1

24
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+
𝑛−1
𝑘=0             (12) 

Where the power function (𝜂 − 𝜂𝑘)+ defined as 

(𝜂 − 𝜂𝑘)+  {
𝜂 − 𝜂𝑘    if  𝜂 > 𝜂𝑘

0             if   𝜂 ≤ 𝜂𝑘
          

Consider a third order linear BVP of the form  

𝑢′′′(𝜂) + 𝑝(𝜂)𝑢′′(𝜂) + 𝑞(𝜂)𝑢′(𝜂) + 𝑟(𝜂)𝑢(𝜂) = 𝑡(𝜂)  ; 𝑎 ≤ 𝜂 ≤ 𝑏,  (13) 

with boundary conditions 𝑢(𝑎) = 𝑘1 , 𝑢′(𝑎) = 𝑘2 , 𝑢′(𝑏) = 𝑘3 

                  Where  𝑢(𝜂), 𝑝(𝜂), 𝑞(𝜂), 𝑟(𝜂), 𝑠(𝜂) are continuous 

functions defined in the interval [𝑎, 𝑏];   𝐾1, 𝑘2  𝑎𝑛𝑑 𝑘3 are 

finite real constants. 

In this section, the spline solution of equations (13) is 

determined using a collocation method. Let (12) be an 

approximate solution of eq. (13), where 𝑎0, 𝑏0,𝑐0,𝑑0,𝑑1 … 𝑑𝑛−1 

are unknown real coefficients to be determined. 

Let 𝜂0, 𝜂1 … , 𝜂𝑛 be n+1 grid points in the interval [a,b], so that 

   𝜂𝑖 = 𝑎 + 𝑖ℎ , 𝑖 = 0,1, … , 𝑛;  𝜂0 = 𝑎, ℎ =
𝑎−𝑏

ℎ
.         (14) 

It is required that approximate solution (12) satisfies the 

differential equation at the points 𝜂 = 𝜂𝑖. Putting (12) in (13), 

we obtain the collocation equations as follows 

𝑎0𝑟(𝜂𝑖) + 𝑏0[𝑞(𝜂𝑖) + 𝑟(𝜂𝑖)𝜂𝑖] + 𝑐0 [𝑝(𝜂𝑖) + 𝑞(𝜂𝑖)𝜂𝑖 +
1

2
𝑟(𝜂𝑖)𝜂𝑖

2] + 𝑑0 [1 + 𝑝(𝜂𝑖)𝜂𝑖 +
1

2
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2 +
1

6
𝑟(𝜂𝑖)𝜂𝑖

3] +

∑ 𝑒𝑘
𝑛−1
𝑘=0 [(𝜂𝑖 − 𝜂𝑘) +

1

2
𝑝(𝜂𝑖)(𝜂𝑖 − 𝜂𝑘)2 +

1

6
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𝜂𝑘)3 +
1

24
𝑟(𝜂𝑖)(𝜂𝑖 − 𝜂𝑘)4] = 𝑡(𝜂𝑖)    i= 0,1, 2, ….,n     (15) 
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1
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Using the power function (𝜂 − 𝜂𝑘)+ in the above equations a 

system of n+3 linear equations in n+3 unknowns 

𝑎0, 𝑏0, 𝑐0, 𝑑0, 𝑑1, … , 𝑑𝑛−1 is thus obtained. This system can be 

written in metrix-vector form as follows 

                                           AC = F                               (19) 

Where C = [𝑎0, 𝑏0, 𝑐0, 𝑑0, 𝑑1, … , 𝑑𝑛−1]𝑇 

            and  𝐹 = [𝑘1,, 𝑘2 , 𝑠(𝜂0), 𝑠(𝜂1), … . , 𝑠(𝜂𝑛) , 𝑘3]𝑇    

where T denoting transpose. 

The coefficient matrix A is an upper triangular Hessenberg 

matrix with a single lower subdiagonal, principal and upper 

diagonal having non-zero elements. Because of this nature of 

matrix A, the determination of the required quantities 

becomes simple and consume less time. The values of these 

constants ultimately yield the Quartic spline 𝑆(𝜂) in equation 

(12). 

In case of nonlinear boundary value problem, the equations 

can be converted into linear form by any known method like 

quasilinearization [6 ] or Newton’s linearization and hence 

this method can be used as iterative method. The procedure to 

obtain a spline approximation of 𝑢𝑖 ( i = 0, 1, 2, …, j; where j 

denotes the number of iteration) by an interative method starts 

with fitting a curve satisfying the end conditions and this 

curve is designated as 𝑢𝑖. We obtain the successive iterations 

𝑢𝑖’s with the help of an algorithm described as above till the 

desired accuracy. 
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QUARTIC SPLINE SOLUTION: 

Now the nonlinear boundary value problem, the equations (7), (8) can be converted into linear form by quasilinearization [6] 

method as follows 

 𝑓𝑖+1
′′′ (𝜂) + (

3𝑛+1

𝑛+1
) 𝑓𝑛(𝜂)𝑓𝑖+1

′′ (𝜂) − (
4𝑛

𝑛+1
) 𝑓𝑛

′(𝜂)𝑓𝑖+1
′ (𝜂) − (

3𝑛+1

𝑛+1
) 𝑓𝑛

′′(𝜂)𝑓𝑖+1(𝜂) = − (
2𝑛

𝑛+1
) (𝑓𝑛

′(𝜂))
2

+ (
3𝑛+1

𝑛+1
) 𝑓𝑛(𝜂)𝑓𝑛

′′(𝜂); n = 0, 

1, 2, … , (n-1)                       (20) 

                          𝑓𝑖+1(0) = 0, 𝑓𝑖+1
′ (0) = 1, 𝑓𝑖+1

′ (∞) = 0   (21)                                                     

For the numerical study the outer boundary is set at 𝜂∞ = 5 and therefore the domain of the problem is restricted to [0, 5]   and 

end condition 𝑓′(∞) = 0 is considered as 𝑓′(5) = 0. The collocation equation corresponding to the equations (20), (21) are 

obtained as follows 

(
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1

6
(

3𝑛+1

𝑛+1
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′′(𝜂)(𝜂𝑛 − 𝜂0)3] 𝑑0 + ∑ 𝑒𝑘 [(𝜂𝑛 − 𝜂𝑘) +𝑛−1
𝑘=0

1

2
(

3𝑛+1

𝑛+1
) 𝑓𝑛(𝜂)(𝜂𝑛 − 𝜂𝑘)2 −

1

6
(

4𝑛

𝑛+1
) 𝑓𝑛

′(𝜂)(𝜂𝑛 − 𝜂𝑘)3 +
1

24
(

3𝑛+1

𝑛+1
) 𝑓𝑛

′′(𝜂)(𝜂𝑛 − 𝜂𝑘)4]   = − (
2𝑛

𝑛+1
) (𝑓𝑛

′(𝜂))
2

+ (
3𝑛+1

𝑛+1
) 𝑓𝑛(𝜂)𝑓𝑛

′′(𝜂)    

;n=0, 1, 2, …….,9                                                  (22) 

The conditions  𝑓𝑖+1(0) = 0, 𝑓𝑖+1
′ (0) = 1, 𝑓𝑖+1

′ (5) = 0 gives 

𝑎0 = 0 ,  𝑏0 = 1 and 

𝑏0 + 5𝑐0 +
25

2
𝑑0 +

1

6
∑ 𝑒𝑘

𝑛−1
𝑘=0 (5 − 𝜂𝑘)+

3 = 0                  (23) 

To obtain the complete solution of the problem. We solve equations (22), (23) for the unknown 𝑎0, 𝑏0, 𝑐0, 𝑑0, 𝑒0, 𝑒1, … , 𝑒9 to 

obtain approximate solution for 𝑓(𝜂), 𝑓′(𝜂) 𝑎𝑛𝑑 𝑓′′(𝜂) using equation (12). The results are obtained for different parameters 

involved in the problem and are presented in the table as well as in graph. 

 

Table: 1 Stream function f 

 n =1 n =2 n =3 n =4 n =5 n =10 

𝒇(𝟎. 𝟎) 0 0 0 0 0 0 

𝒇(𝟎. 𝟓) 0.3741596 0.3630976 0.3580974 0.3552388 0.3533867 0.3493248 

𝒇(𝟏. 𝟎) 0.5679171 0.5394447 0.5269504 0.519913 0.5153949 0.5055987 

𝒇(𝟏. 𝟓) 0.6636138 0.6220542 0.6042712 0.5943804 0.5880785 0.5745458 

𝒇(𝟐. 𝟎) 0.7103019 0.6612198 0.6406458 0.6293181 0.6221444 0.6068561 

𝒇(𝟐. 𝟓) 0.7335445 0.6809182 0.6592015 0.6473335 0.6398504 0.6239878 

𝒇(𝟑. 𝟎) 0.7456315 0.6916784 0.669647 0.6576633 0.6501273 0.6342012 

𝒇(𝟑. 𝟓) 0.7521318 0.6978053 0.6757462 0.6637736 0.6562527 0.6403773 

𝒇(𝟒. 𝟎) 0.7554245 0.7009241 0.6788301 0.6668413 0.6593102 0.6434091 

𝒇(𝟒. 𝟓) 0.7564549 0.7015859 0.6793114 0.6672112 0.6596038 0.6435229 

𝒇(𝟓. 𝟎) 0.7555591 0.6999378 0.6772777 0.6649426 0.657177 0.6407321 
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Table 2: Velocity profile 𝑓′ 

 n=1 n=2 n=3 n=4 n=5 n=10 

𝒇′(𝟎. 𝟎) 1 1 1 1 1 1 

𝒇′(𝟎. 𝟓) 0.534498 0.4999815 0.4847027 0.4760609 0.4704989 0.4584027 

𝒇′(𝟏. 𝟎) 0.2679954 0.2361435 0.2228544 0.2155638 0.2109587 0.2011821 

𝒇′(𝟏. 𝟓) 0.1306968 0.1104735 0.1026412 0.0985121 0.0959686 0.0907424 

𝒇′(𝟐. 𝟎) 0.0641696 0.0538553 0.0502932 0.0485363 0.0475007 0.0454969 

𝒇′(𝟐. 𝟓) 0.0327618 0.0286219 0.0275075 0.0270501 0.0268172 0.0264651 

𝒇′(𝟑. 𝟎) 0.0177196 0.016703 0.0166798 0.01676 0.0168429 0.0170972 

𝒇′(𝟑. 𝟓) 0.0099139 0.0100774 0.0103554 0.0105511 0.0106884 0.0110109 

𝒇′(𝟒. 𝟎) 0.0051438 0.0054297 0.0056241 0.0057417 0.0058185 0.0059844 

𝒇′(𝟒. 𝟓) 0.0015795 0.0014825 0.0014327 0.0013975 0.0013713 0.0013029 

   𝒇′(𝟓. 𝟎) 0 0 0 0 0 0 

 

Table 3: Skin friction 𝑓′′(0) 

n 𝒇′′(𝟎) 

1 -1 .16583349  

2 -1 .30158215  

3 -1 .36492236  

4 -1 .40171394  

5 -1 .4257801  

10 -1 .47920937  

 

 

 

Figure 2. Variation of f with increasing of the parameter n 
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Figure 3. Variation of 𝑓′ for increasing value of the parameter n 

 

DISCUSSION OF RESULTS AND CONCLUSIONS: 

The graphs of the function𝑓(𝜂) and𝑓′(𝜂) are drawn against 𝜂 

for different values of the parameter n in fig. 2 and 3. Here the 

parameter n is a measure of nonlinearity of the stretching 

sheet. 

It is shown in Fig. 3 that the velocity 𝑓′ and boundary-layer 

thickness decreases by increasing the parameter n. Fig. 2 

shows that the 𝑓 decreases as 𝜂 increases whereas the 

boundary-layer thickness increases. It is also observed that the 

flows does not noticeably depend on n for n≥ 15. The values 

of the skin friction and fractional darg coefficient are given in 

Table 3. It is clear form table 3 that the magnitude of skin 

friction coefficient increases with an increase in n. Also the 

first value in table 3 for the linear stretching case (n=1) is 

exactly the same when compared with the numerical and 

perturbation solutions presented in [3]. This shows that the 

Quartic spline collocation results agree well with the 

numerical and analytical ones. 

In this paper, analysis of the axisymmetric flow of a viscous 

fluid over a nonlinearly stretching sheet is carried out. The 

numerical solutions are presented using the Quartic spline. 

The effect of the parameter n on the velocity are presented 

graphically and discussed. It is found that the effect of the 

parameter n is small for n≥ 15. Moreover, the results of the 

linear stretching sheet can be derived form the presented 

solution for n=1 and are quite comparable with the existing 

results as presented in [3] 
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