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Abstract

This note studies existence of positive prime periodic solutions of higher order for
rational recursive equations of the form yn = A + yn−k/yn−m, n = 0, 1, 2, . . .,
with y−s, y−s+1, . . . , y−1 ∈ (0, ∞), k odd and m ∈ {1, 2, 3, 4, . . .}, where s =
max{k, m}. In particular, we show that for k ≥ 5, odd, m ≥ 1, gcd(k, m) = 1
and sufficiently small A > 0, there exist periodic solutions with prime period
2m∗ + Um∗ , for some m∗, where Um = min{i ∈ N : i(i + 1) ≥ 2m}. A value of
m∗ > (k − 1)2/2 + m is given explicitly.
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1. Introduction

This note studies existence of prime periodic solutions of higher order for rational recur-
sive equations of the form

yn = A + yn−k

yn−m

, n = 0, 1, . . . , (1.1)

with A > 0, y−s, y−s+1, . . . , y−1 ∈ (0, ∞) and m ∈ {1, 2, 3, 4, . . .}, where s =
max{k, m}. Equation (1.1) has been studied by many authors in the recent past. In [1],
conditions for global asymptotic stability of solutions are presented for k = 1. In [4],
some quantitative bounds for solutions are provided. Properties of solutions for A < 0
are considered in [17] and [18]. Further results for equations of the type in (1.1) can be
found in [1–20] and the references therein.

It is known that all positive solutions to (1.1) are bounded (c.f. [1, 6]), and that a
sufficient condition for global asymptotic stability of the positive equilibrium of Equation
(1.1) is A > 1, but little is known regarding possible behavior of solutions for small
A > 0 and large k and m. One particularly well-known conjecture regarding solutions
for A < 1 is the following (see for instance, [1]).

Conjecture 1.1. Suppose that (k, m) = (1, 3). Prove that when A >
√

2−1, the unique
positive equilibrium of Equation (1.1) is globally asymptotically stable.

In [3], it was shown that for k = 1 and almost all m, for sufficiently small A, there
exists a prime period 2m + Um solution to (1.1), where Um = max{i ∈ N : i(i + 1) ≤
2(m − 1)} + 1 = min{i ∈ N : i(i + 1) ≥ 2m}. In particular, the following theorem was
proven.

Theorem 1.2. Set V =
⋃
j>0

{
j (j + 1)

2
,
j (j + 1)

2
+ 1

}
. If m > 1 satisfies m /∈ V and

k = 1, then there exists an εm > 0 such that for all 0 < A < εm, there exists a prime
period 2m + Um solution to (1.1).

Here we will generalize the work in [3] to cover the case of general odd k by proving
the following theorem.

Theorem 1.3. For k, m ∈ N
+, set

Uk,m = max{i ∈ N : i(i + k − 2) ≤ 2m}. (1.2)

If k ≥ 5 is odd, then for all m ≥ 1 with gcd(k, m) = 1, there exists an εk,m > 0 such
that for all 0 < A < εk,m, there exists a prime period

Pm∗ = 2m∗ + Um∗ = k(k − 1) + 2m + kUk,m

solution to (1.1), where

m∗ = (k − 1)2

2
+ m + k − 1

2
Uk,m. (1.3)



On a Rational Recursive Sequence with Parameter near the Boundary 55

Table 1: Prime periods of existing positive solutions to Equation (1.1) for sufficiently
small A

k/m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 13 20 22 29 31 33
3 13 20 22 29 31 40 44 46
5 22 29 31 33 42 44 46 53 57 59 61 68
7 44 46 55 57 59 61 72 74 76 78 87 89 93
9 74 76 89 91 95 97 110 112 116 118
11 112 114 116 118 131 133 135 137 139 141 156 158 160 162
13 158 160 162 164 166 181 183 185 187 189 191 193 210 212
15 212 214 216 218 222 239 241 243 247 249 251 253
17 274 276 278 280 282 284 286 305 307 309 311 313 315 317 319
19 344 346 348 350 352 354 356 358 379 381 383 385 387 389 391
21 422 424 428 430 436 461 463 467
23 508 510 512 514 516 518 520 522 524 526 551 553 555 557 559
25 602 604 606 608 612 614 616 618 622 649 651 653

Remark 1.4. For the case k = 3, see Theorem 2.1, below.

Some periods implied by the results given here are provided in Table 1.4. Theorem
1.3 as well as a result covering the case k = 3 are proven in the next section.

2. Proof of the Main Theorem

In this section we prove Theorem 1.3. The essential idea is to show that m∗ given in
(1.3) (which was initially suggested through computations) satisfies

(i) Um∗ = Uk,m + k − 1

(ii) m∗ /∈ V

(iiii) gcd(k, Pm∗) = 1

(iv) m∗k = m mod Pm∗ .

The result will then follow upon employing Theorem 1.2 for (k, m) = (1, m∗) to obtain
a prime periodic solution, {yi}, to the equation yn = A + yn−1/yn−m∗ and verifying that
{y∗

i } defined via y∗
i = yj whenever kj = i mod Pm∗ is a prime periodic solution, as

required.

Proof of Theorem 1.3. From the definition of Uk,m, we have

Uk,m(Uk,m + (k − 2)) ≤ 2m and (Uk,m + 1)(Uk,m + (k − 1)) ≥ 2m + 1. (2.1)
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Now, note that via (2.1) and (1.3)

(Uk,m + (k − 1))(Uk,m + k) = (Uk,m + (k − 1))(Uk,m + 1) + Uk,m(k − 1) + (k − 1)2

≥ 2m + 1 + Uk,m(k − 1) + (k − 1)2 > 2m∗ (2.2)

and

(Uk,m + (k − 2))(Uk,m + (k − 1))

= (Uk,m + (k − 2))Uk,m + Uk,m(k − 1) + (k − 1)(k − 2)

= (k − 1)2 − (k − 1) + Uk,m(k − 1) + (Uk,m + (k − 2))Uk,m

≤ (k − 1)2 + (k − 1)Uk,m + 2m − (k − 1)

= 2m∗ − (k − 1) < 2m∗. (2.3)

The inequalities in (2.2) and (2.3) and the definition of Um∗ give that

Um∗ = Uk,m + (k − 1). (2.4)

We then have via (1.3) and (2.4) that

Pm∗ = 2m∗ + Um∗ = (k − 1)2 + 2m + (k − 1)Uk,m + Um∗

= k(k − 1) + 2m + kUk,m + (Um∗ − Uk,m − (k − 1)) = k(k − 1) + 2m + kUk,m.

(2.5)

If (k − 1)/2 > 1 (i.e., k > 3), the inequalities in (2.2) and (2.3) also guarantee that
m∗ /∈ V . Hence, suppose that {ai} is a solution to the equation

yn = A + yn−1

yn−m∗
, n = 0, 1, . . . . (2.6)

Note that Equation (2.5) gives that gcd(k, Pm∗) = 1 (since k is odd and gcd(k, m) = 1)
and define the sequence {a∗

i } via a∗
i = aj , whenever kj = i mod Pm∗ .

Now, forn > s∗ def= max{k, m, m∗}, considera∗
n, a∗

n−k anda∗
n−m. We havea∗

n = ank−1

where k−1 is taken so that k−1k = 1 mod Pm∗ and k−1 > 0. Similarly a∗
n−k =

a(n−k)k−1 = ank−1−1 and a∗
n−m = a(n−m)k−1 = ank−1−mk−1 . Employing (1.3) and (2.5)

gives

m∗k − m = k(k − 1)2

2
+ m(k − 1) + k(k − 1)

2
Uk,m

= k − 1

2
(k(k − 1) + 2m + kUk,m) = k − 1

2
P ∗

m = 0 mod P ∗
m. (2.7)
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Thus, by the definition of {a∗
i } and the Pm∗-periodicity of {ai}, we have

a∗
n = ank−1 = A + ank−1−1

ank−1−m∗
= A + a(n−k)k−1

ank−1−m∗

= A + a(n−k)k−1

ank−1−mk−1
= A + a(n−k)k−1

a(n−m)k−1

= A + a∗
n−k

a∗
n−m

(2.8)

and {a∗
i }i>s∗ is a periodic solution of (1.1) with period Pm∗ . To verify that the constructed

solution, {a∗
i }, has prime period Pm∗ , note that for sufficiently small A, the solution {ai}

of period Pm∗ constructed in [3] has only one value in the interval [1 − A, 1 + 3A] or
one in the interval [1/A − 3, 1/A + 4] per each Pm∗-cycle. Any Pm∗ consecutive terms
of the solution {a∗

i } comprise a simple reordering of the values in the cycle, and hence
{a∗

i } has prime period Pm∗ . �

For the case k = 3, we have the following.

Theorem 2.1. Suppose k = 3 and set W =
⋃
j>0

{
j (j + 1)

2

}
(the set of positive tri-

angular numbers). If m > 1 satisfies m /∈ W and gcd(m, 3) = 1, then there exists an
ε3,m > 0 such that for all 0 < A < ε3,m, there exists a prime period Q = 6+2m+3U3,m

solution to (1.1).

Proof. Note that for k = 3 and m satisfying gcd(3, m) = 1, all parts of the proof
of Theorem 1.3 hold except perhaps that m∗ could be an element of V . Considering
Equation (2.3), this can happen only if (Uk,m + (k − 2))Uk,m = (U3,m + 1)U3,m = 2m,
or equivalently if m ∈ W . The proof then follows as in the case of k ≥ 5. �

We close with the following conjecture.

Conjecture 2.2. For k, m satisfying the requirements of either Theorem 1.2, 1.3 or
2.1, there exists an εk,m > 0 such that all nontrivial solutions to Equation (1.1) with
0 < A < εk,m are asymptotically periodic with prime period as indicated in the theorem.
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