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Abstract 
 

The purpose of this paper is to study the statistical limit superior and inferior 
following the concept of statistical convergence and statistical cluster point of 
a sequence.We also study definition of statistically monotonicity and some of 
its properties. 
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Introduction 
The concept of limit and cluster point of a sequence x have been extended to 
statistical limit and statistical limit points and cluster points [7], [8], [9] using the 
concept of natural density  [11] of a set A of positive integers. Statistical 
convergence has many applications in different fields of mathematics like number 
theory [6], summability theory [10] and in locally convex spaces [16]. 
 Let A be a subset of IN and A(n) = { a : } then the natural density of A, 
denoted by (A), is defined by 
 (A) = lim ∞ |A n | 
 If the limit exists and where the vertical bars denotes the cardinality of enclosed 
set. A real or complex valued sequence x = { } is said to converge stastically to the 
number ξ, if for every  0,         ∈: | |  and it is denoted by st-lim x =ξ. 
 The number ν is called a statistical cluster point of x = { } if for every 0 the 
set {k: | | } does not have density zero. 
 Throughout in this paper IN nd IR will denote the set of natural numbers and real 
numbers respectively and we will consider real number sequences. 
 Statistical Limit Superior And Statistical Limit Inferior:  
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 In this section we study definitions of the concepts of statistical limit superior and 
inferior and to develop some stastical analogues of properties of the ordinary limit 
superior and inferior. 
 If k ⊆ IN, then k  = {k: k  n} and |k |denotes the cardinality of k . For a real 
sequence x let B  denote the set  
 BX = { b∈IR: ( k: ξ b) ≠ 0} 
 Similarily, A  = { a∈IR: ( k: ξ  a  ≠ 0} 
 Note that throughout in this paper (k)≠0 means that either (k) 0 or k does not 
have natural density. 
 
Definition: If x is a real number sequence, then the statistical limit superior of x is 
given by 

 St-lim supx =
sup B , if B   ,

∞, if B   .  

 Also, the statistical limit inferior of x is given by 

 St-lim infx = 
 inf A , if A  , ∞, if A  .  

 Following example will help to illustrate the above defined concept. Let us 
consider a sequence x = { } defined by  

 ξ  =

k, if k is an odd square,2, if k is an even square,1, if k is an odd nonsquare,o, if k is an even nonsquare. 
 Although x is unbounded above, it is “statistically bounded” because the set of 
squares have density zero. 
 Thus B  ∞, 1  and st-lim supx = 1. Also, x is not statistically convergent 
since it has two (disjoint) subsequences of positive density that converge to 0 and 1, 
respectively (see [8] ). Also note that the set of statistically cluster points of x is {0, 
1}, and st-lim supx equals the greatest element while st-lim infx is the least element of 
this set. This observation leads to the main idea of the following theorem which can 
be proved by least upper bound argument. 
 
Theorem 1: If  = st-lim supx is finite, then for every positive number   { k: ξ } ≠ 0 and { k: ξ } =0. 
 Conversely, if (1) holds for every positive  then  = st-lim supx. 
 The dual statement for st-lim infx is as follows. 
 
Theorem 2: If  = st-lim infx is finite, then for every positive number    { k: ξ } ≠ 0 and { k: ξ } = 0. 
 Conversely, if (2) holds for every positive  then  = st-lim infx. 
 
Remark: By definition of statistical cluster point [9] we see that theorem 1 and 2 can 
be interpreted as saying that st-lim supx and st-lim infx are the greatest and least 
statistical cluster points of x. 
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Theorem 3: For any sequence x, st-lim infx  st-lim supx. 
 
Proof: first let us consider the case when st- lim sup x = −∞. Then Bx = , so for 
every b in IR, { k: ξ  b} = 0. This implies that { k: b} = 1, so for every a in 
IR, { k: ξ a} ≠ 0. Hence, st- lim inf x = −∞. 
 The case in which st-lim sup x = +∞ is obvious. Next assume that st-lim supx is 
finite say  and let st-lim infx = .For given 0 we show that + ∈ A , so that   .Since  =l.u.b. B  so by theorem 1, { k: ξ  } = 0. Hence { k: 

ε} = 1 and which, in turn implies that { k: ξ } = 1.Hence, ∈ A .But  = inf A  by definition, so we conclude .Since  is 
arbitrary, we have . 
 This completes the proof. 
 
Definition: The real number sequence x is said to be statistically bounded if there is a 
number B such that { k: ξ  B } = 0. 
 
Remark: Statistical boundedness implies that st- lim sup and st- lim inf are finite, so 
Properties (1) and (2) of Theorems 1 and 2 hold. 
 
Theorem 4: The statistically bounded sequence x is statistically convergent if and 
only if  
 st- lim inf x = st-lim sup x. 
 
Proof: Let st-lim infx =  and st-lim supx = . First let us assume that st-lim = ξ and 0 be given.Then { k: | | } = 0 and thus { k: ξ  } = 0.This 
implies that . Also, we have { k: ξ  } = 0 which implies ξ . Hence, 
we have . i.e. . But by theorem 3, .Thus = . Conversely, 
assume  and let 0 be given. Then by theorem 1 and 2 we have { k: 
ξ } = 0 and { k: ξ ε} = 0. But (say) so we have { k: 
ξ } = 0 and { k: ξ } = 0. Hence st-lim x = ξ. 
 This completes the proof. 
 
Statistical monotonicity:  
In this section we study the concept of statistical monotonicity [13] and some related 
results. 
 
Definition: A sequence x = (ξ ) is statistical monotone increasing (decreasing) if 
there exists a subset A⊆IN with (A) = 1 such that the sequence x = (ξ ) is monotone 
increasing (or decreasing) on A. 
 
Definition: A sequence x = (ξ ) is statistical monotone if it is statistical monotone 
increasing or statistical monotone decreasing. 
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Theorem: If the sequence x = ( ) is bounded and statistical monotone then it is 
statistically convergent. 
 
Theorem: If x = (ξ ) is statistical monotone increasing or statistical monotone 
decreasing then 
 lim ∞ |  k: k n, x x | = 0 
 Or 
 lim ∞ |  k: k n, x | = 0 
respectively. 
 
Remark: The inverse of these assertions is not correct because of the following 
example:  
 Define x = ( ) by 

 ξ  = 1, if 2 n 2 1 for even k,0, otherwise.  

 Clearly above theorem holds for this sequence but this sequence is not statistical 
monotone (and not statistically convergent). 
 
Definition: (Dense Subsequence) The subsequence x’ = (ξ ) of x = (ξn) is called a 
dense subsequence, if �(K∞′) = 1. 
 
Theorem: Every dense subsequence of a statistical monotone sequence is statistical 
monotone. 
 
Theorem: The statistical monotone sequence x = (ξn) is statistically convergent if and 
only if x = (ξn) is statistical bounded. 
 
Definition: The sequence x = (ξn) and y = (σn) are called statistical equivalent if there 
is a subset M of N with �(M) = 1 such that ξn = σn for each n∈M.It is denoted by 
x�y. 
 With this definition we formulate following theorem. 
 
Theorem: Let x = (ξn) and y = (σn) be statistical equivalent. Then x = (ξn) statistical 
monotone if and only if y = (σn) is statistical monotone. 
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