A Common Fixed Point Theorem for Three Self Mappings in a Fuzzy 2-Metric Spaces

S.S. Thakur and Dinesh Singh Yadav

Department of Applied Mathematics Jabalpur Engineering College, Jabalpur Email: samajh_singh@rediffmail.com
Department of Applied Mathematics
Takshshila institute of Engineering and Technology, Jabalpur
Email: dinyadav1976@gmail.com

Abstract

The aim of this present paper is to obtain a common fixed point for three mappings in a fuzzy 2-metric spaces which generalizes a result of A. K. Sharma et. al. [9].

Keywords: Fuzzy sets, Fuzzy 2-metric spaces, R-weakly commuting maps, Fixed Point.

Preliminaries

We quote some definitions and statements of a few theorems which will be needed in the sequal.

Definition 1.1 [11]: A fuzzy set A in X is function with domain X and values in [0, 1].

Definition 1.2 [11]: A binary operation $*: [0.1] \times [0,1] \times [0,1] \rightarrow [0,1]$ is called a t-norm of $\{[0,1],*\}$ is an abelian topological monoid with unit 1 such that $a_1*b_1*c_1 \leq a_2*b_2*c_2$ whenever $a_1 \leq a_2, b_1 \leq b_2, c_1 \leq c_2$ for all $a_1, a_2, b_1, b_2, c_1, c_2 \in [0,1]$.

Definition 1.3 [11]: The 3 - triple(X, M, *) is said to be fuzzy 2-metric space if X is an arbitrary set, * is a continuous t - norm and M is a fuzzy set in $X^3 \times [0, \infty)$ satisfying the following conditions:

For all
$$x, y, z \in X$$
 and $s, t > 0$
[FM-1] $M(x, y, z, 0) = 0$,

- [FM-2] M(x, y, z, t) = 1 for all t > 0 and when at least two of the three points are equal,
- [FM-3] M(x, y, z, t) = M(y, x, z, t) = M(z, x, y, t) symmetry about three variable,
- [FM-4] $M(x,y,u,t_1) * M(x,u,z,t_2) * M(u,y,z,t_3) \le M(x,y,z,t_1 + t_2 + t_3), \forall x,y,z,u \in X \ and \ t_1,t_2,t_3 > 0$
- [FM-5] $M(x, y, z.): [0, \infty) \rightarrow [0, 1]$ is left continuous,
- [FM-6] $\lim_{t\to\infty} M(x, y, z, t) = 1$

The function value M(x, y, z, t) may be interpreted as the probability that the area of triangle is less than t.

Definition1.4 [11]: Let (X, M, *) be a fuzzy 2 - metric space.

A sequence $\{x_n\}$ in $fuzzy\ 2-metric$ space X is said to be convergent to a point $x\in X$ if

$$\lim_{n\to\infty} M(x, y, z, t) = 1$$
 for all $a \in X$ and $t > 0$

A sequence
$$\{x_n\}$$
 in $fuzzy\ 2-metric$ space X is called Cauchy sequence if $\lim_{n\to\infty} M(x_{n+p},x_n,w,t)=1$ for all $a\in X$ and $t>0,p>0$

A fuzzy 2-metric space in which every Cauchy sequence is convergent is said to complete.

The mapping f and g of a fuzzy metric space (X, M, *) into itself are R-weakly commuting provided there exists some positive real number R such that

$$M(fgx, gfx, a, t) \ge M(fx, gx, a, t/R)$$
 for all $x \in X$

Theorem 1.5: Let (X, M, *) be a complete fuzzy 2-metric space and let f and g be R – weakly commuting self mappings of X satisfying the conditions:

$$M(fx, fy, w, t) \ge r(M(gx, gy, w, t/R)), for x, y in X$$

Where $r: [0,1] \rightarrow [0,1]$ is a continuous function such that r(t) > t for each 0 < t < 1

The sequence $\{x_n\}$ and $\{y_n\}$ in X are such that $x_n \to x$ $y_n \to y$, t > 0 implies that $M(x_n, y_n, w, t) \to M(x, y, w, t)$ as $n \to \infty$

If the range of g contains the range of f and if either f or g is continuous, then f and g have a unique common fixed point in X.

Now if let (X, M, *) be a complete fuzzy 2-metric space and let f, g and h be R – weakly commuting mappings of X into X satisfying the conditions;

where $r: [0,1] \rightarrow [0,1]$ is a continuous function such that r(t) > t for each 0 < t < 1

55

Then for any $x_0 \in X$, by (1.1), we choose a point $x_1 \in X$ such that $fx_0 = hx_1$ and for this x_1 ; there exists a point $x_2 \in X$ such that $gx_1 = hx_2$ and so on.

Continuing in the manner, we can choose a sequence $\{y_n\}$ in X such that

The sequence $\{x_n\}$ and $\{y_n\}$ in X are such that $x_n \to x$ $y_n \to y$, t > 0 implies that $M(x_n, y_n, w, t) \to M(x, y, w, t)$ as $n \to \infty$

Lemma 1.6. Let (X, M, *) be a complete fuzzy 2-metric space and let f, g and h be R – weakly commuting self mappings of X into X satisfying the conditions (1.1) and (1.2) then the sequence $\{y_n\}$ defined in (1.3) is a Cauchy sequence in X.

Proof: For t > 0

i.e. $M(y_{2n}, y_{2n+1}, w, t) > M(y_{2n-1}, y_{2n}, w, t)$ for all $n \ge 0$.

Thus $\{M(y_{2n}, y_{2n+1}, w, t)\}$, $n \ge 0$ is a increasing sequence of positive numbers in [0, 1] and therefore to a limit $1 \le 1$. We claim that 1 = 1. For if 1 < 1, on letting $n \to \infty$ in (1.4), we have $1 \ge r(1) > 1$, which is a contradiction. Hence 1 = 1

Similarly $M(y_{2n+1}, y_{2n+2}, w, t) > M(y_{2n}, y_{2n+1}, w, t)$ \forall $n \ge 0$ $\{M(y_{2n+1}, y_{2n+2}, w, t)\}, n \ge 0$ is a increasing sequence of positive numbers in [0, 1] and therefore to a limit 1=1.therefore for every $n \in N$

$$M(y_n,y_{n+1},w,t) > M(y_{n-1},y_n,w,t) \ and \ M(y_n,y_{n+1},w,t) = 1; t > 0.$$

Now for any positive integer p,

$$\begin{split} &M\big(y_n,y_{n+p},w,t\big) \geq M(y_n,y_{n+1},w,t/p) * \ldots \ldots M\big(y_{n+p-1},y_{n+p},w,t/p\big) \\ &\geq M(y_n,y_{n+1},w,t/p) * \ldots \ldots M(y_n,y_{n+1},w,t/p) \\ &\geq 1 * 1 * \ldots \ldots * 1 \end{split}$$

i.e. $M(y_n, y_{n+p}, w, t) \ge 1$. thus $\{y_n\}$ is a cauchy sequence in X.

Main Result

Theorem 2.1: Let f, g and h be three self mappings on a fuzzy 2 - metric space (X, M, *) satisfying (1.1) and (1.2). Suppose that h is continuous and pairs (f, h) & (g, h) are R - weakly commuting on X. Then f, g and h have a unique common fixed point in X.

Proof: For any arbitrary point $x_0 \in X$ by (2.1), we can choose $x_1 \in X$: $fx_0 = hx_1$ and for this $x_1 \in X$, there exist $x_2 \in X$: $gx_1 = hx_2$ and so continue in this manner we can

choose a sequence $\{y_n\}$ in X such that

$$y_{2n} = fx_{2n} = hx_{2n+1}, y_{2n+1} = gx_{2n+1} = hx_{2n+2}, for n = 0, 1, 2 \dots$$

Then by lemma 1.2, sequence $\{y_n\}$ is a Cauchy sequence in X. But X is complete and so by completeness of X, $\{y_n\}$ is converges to some point u in X. Consequently the sequences

$$\{fx_{2n}\}, \{hx_{2n+1}\}, \{gx_{2n+1}\}, \{hx_{2n+2}\} \ of \{y_n\} \ also \ converges \ to \ u \ in \ X.$$

Suppose that h is continuous and let pairs (f, h) is R – weakly commuting then it follows that

$$M(fhx_n, hfx_n, w, t) \ge r(M(fx_n, hx_n, w, \frac{t}{R}))$$
 for all x in X .

On letting $n \rightarrow \infty$ we get

$$M(fhx_nhu, w, t) \to M\left(u, u, w, \frac{t}{R}\right) hence fhx_n \to hu$$

From (1.2) $M(fhx_{2n}, gx_{2n+1}, w, t) \ge r\{M(hhx_{2n}, hx_{2n+1}, w, t)\}$ on letting $n \to \infty$, we get

$$M(hu, u, w, t) \ge r\{M(hu, u, w, t)\}$$

> $M(hu, u, w, t)$ which is contradiction.

Hence, hu = u

Also by (1.2) $M(fu, gx_{2n+1}, w, t) \ge r\{M(hu, hx_{2n+1}, w, t)\}$

On letting $n \rightarrow \infty$, we get $M(fu, u, w, t) \ge r\{M(hu, u, w, t)\}$

 $= r\{M(u,u,w,t)\}$

 $= r\{1\}i.e.1$

Hence, fu = u.

Now consider M(u, gu, w, t) = M(fu, gu, w, t)

 $\geq r\{M(hu, hu, w, t)\}$

 $= r\{1\}i.e.1$

Hence gu = u, thus u is common fixed point of f, g and h.

Uniqueness: Suppose that $v \neq u$ is another common fixed point of f, g and h. Then there exists

t > 0 such that M(u, v, w, t) < 1

M(u, v, w, t) = M(fu, gv, w, t)

 $\geq r\{M(hu,hv,w,t)\}$

 $= r\{M(u, v, w, t)\} > M(u, v, w, t)$, which is a contradiction.

Hence, v = u and so u is unique common fixed point of f, g and h.

References

[1] R. Chugh and S. Kumar, Common Fixed Point Theorem in Fuzzy Metric Spaces, Bull.Cal. Math. Soc., 94 (1)(2002), 17-22.

- [2] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and System, 64 (1994), 395-399.
- [3] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and System, 64 (1994), 365-368.
- [4] M. Grabiec, Fixed Points in fuzzy metric spaces, Fuzzy Sets and Systems, 27(1988), 385-389.
- [5] I. Kramosil and J.Michalek, Fuzzy metric and statistical metric spaces, Kubernetika, 11(1975), 336-344.
- [6] H.K Pathak, Y.J. Cho and S.M. Kang, Remarks on R-weakly commuting mappings and common fixed point theorems, Bull Korean Math. Soc. 34(1997), No. 2 247-257
- [7] R. P. Pant, Common fixed point of noncommuting mappings, J. Math. Anal. Appl., 188: 2(1994), 436-440.
- [8] V. Pant and R.P.Pant, Fixed points in fuzzy metric space for non compatible maps, Soochow Journal of Mathematics, Volume 33, No.4(2007), 647-655.
- [9] A.Sharma and V.K. Gupta, A common fixed point theorem for three self mappings in a fuzzy metric spaces. Int. J. contemp. Math. Sciences, Vol. 7, 2012, no.31, 1509-1518.
- [10] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North Holland, Amsterdam, 1983.
- [11] B. Singh and S. Jain Genaralized theorem in fuzzy metric spaces, Southeast Asian Bulletin of Mathematics 31, (2007), 1-16
- [12] P. V. Subrahmanyam, A common fixed point theorem in fuzzy metric spaces, Information Science, 83(1995), 109-112.
- [13] R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math., 30: 4(1999), 419-423.
- [14] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8(1965), 338-353.