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Abstract

In this paper, an idea of quasicontraction type mapping in fuzzy cone metric space
is introduced and some common fixed point theorems of such type of mapping are
established.
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1. Introduction

The concept of fuzzy set is introduced by L.A.Zadeh [14] in 1965. After that, to use
this concept in topology and analysis different authors have expansively developed the
theory of fuzzy sets and its application in different direction.

On the other hand, there have been a number of generalizations of metric spaces (for
reference please see [2,4,11,12]) and one such generalization is cone metric space which
is introduced by H.Long-Guang et al. [8] which is a generalization of general metric
space. In cone metric space, authors replaced the real numbers by ordering real Banach
space.

By using their concept, different authors [6,10] established many results of cone
metric spaces and fixed point theorems in such spaces.

In an earlier paper [3], the present author introduced an idea of fuzzy cone metric
space and established some basic results and fixed point theorems in such spaces.

In this paper, fuzzy real number is considered in the sense of Xiao & Zhu and fuzzy
norm in the sense of Felbin [5]. The idea of quasicontraction mapping is introduced in
fuzzy cone metric space and established a common fixed point theorem in such space.

1The present work is partially supported by Special Assistance Programme (SAP) of UGC, New Delhi,
India [Grant No. F. 510/4/DRS/2009 (SAP-I)]
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The organization of the paper is as follows: Section 1, comprises some preliminary
results which are used in this paper. A common fixed point theorem is established in
Section 2.

2. Some preliminary results

Definition 2.1. [13] A mapping η : R → [0, 1] is called a fuzzy real number whose
α-level set is denoted by

[η]α = {t : η(t) ≥ α}, α ∈ (0, 1],

if it satisfies two axioms:

(N1) There exists t0 ∈ R such that η(t0) = 1.

(N2) For each α ∈ (0, 1]; [η]α = [η1
α, η2

α],

where −∞ < η1
α ≤ η2

α < +∞. The set of all fuzzy real numbers is denoted by F . Since
to each r ∈ R, one can consider r̄ ∈ F defined by r̄(t) = 1 if t = r and r̄(t) = 0 if
t �= r , R can be embedded in F .

Definition 2.2. [13] Let η ∈ F . Then η is called a positive fuzzy real number if
η(t) = 0 ∀t < 0. The set of all positive fuzzy real numbers is denoted by F+.

Note 2.3. Mizumoto and Tanaka [9], Kaleva & Seikkala [7] denote the set of all fuzzy
real numbers by E. Kaleva & Seikkala [7] and Felbin [5] denote the set of all non-negative
fuzzy real numbers by G and R∗(I ) respectively.

A partial ordering “
” in E is defined by η 
 δ if and only if a1
α ≤ a2

α and b1
α ≤ b2

α

for all α ∈ (0 , 1] where [η]α = [a1
α , b1

α] and [δ]α = [a2
α , b2

α]. The strict inequality
in E is defined by η ≺ δ if and only if a1

α < a2
α and b1

α < b2
α for each α ∈ (0 , 1].

Propositon 2.4. [9] Let η , δ ∈ E(R(I )) and [η]α = [a1
α , b1

α],

[δ]α = [a2
α , b2

α], α ∈ (0 , 1].

Then
[η

⊕
δ]α = [a1

α + a2
α , b1

α + b2
α]

where
(x ⊕ y)(t) = Sups∈Rmin {x(s) , y(t − s)}, t ∈ R.

Definition 2.5. [7] A sequence {ηn} in E is said to be convergent and converges to η

denoted by lim
n→∞ ηn = η if lim

n→∞ an
α = aα and lim

n→∞ bn
α = bα where [ηn]α = [an

α, bn
α]

and [η]α = [aα, bα] ∀α ∈ (0, 1].

Note 2.6. [7] If η, δ ∈ G(R∗(I )) then η ⊕ δ ∈ G(R∗(I )).
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Note 2.7. [7] For any scalar t, the fuzzy real number tη is defined as tη(s) = 0 if t=0

otherwise tη(s) = η
(s

t

)
.

Definition 2.8. [5] (Felbin). Let X be a vector space over R. Let || || : X → R∗(I ) and
let the mappings

L, U : [0 , 1] × [0 , 1] → [0 , 1]

be symmetric, nondecreasing in both arguments and satisfyL(0 , 0) = 0 andU (1 , 1) = 1.

Write
[||x||]α = [||x||1α , ||x||2α]

for
x ∈ X, 0 < α ≤ 1

and suppose for all x ∈ X, x �= 0, there exists α0 ∈ (0 , 1] independent of x such that
for all α ≤ α0,

(A) ||x||2α < ∞
(B) inf||x||1α > 0.

The quadruple (X , || ||, L , U ) is called a fuzzy normed linear space and || || is a fuzzy
norm if

(i) ||x|| = 0̄ if and only if x = 0;

(ii) ||rx|| = |r|||x||, x ∈ X, r ∈ R;

(iii) for all x, y ∈ X,

(a) whenever s ≤ ||x||11, t ≤ ||y||11 and s + t ≤ ||x + y||11, ||x + y||(s +
t) ≥ L(||x||(s) , ||y||(t)),

(b) whenever s ≥ ||x||11, t ≥ ||y||11 and s + t ≥ ||x + y||11, ||x + y||(s +
t) ≤ U (||x||(s) , ||y||(t))

Remark 2.9. [5] Felbin proved that, if L =
∧

(Min) and U =
∨

(Max) then the

triangle inequality (iii) in the Definition 1.1 is equivalent to ||x + y|| 
 ||x||
⊕

||y||.

Further || ||iα; i = 1, 2 are crisp norms on X for each α ∈ (0 , 1].

Definition 2.10. [3] Let (E, || ||) be a fuzzy real Banach space where || || : E → R∗(I ).
Denote the range of || || by E∗(I ). Thus E∗(I ) ⊂ R∗(I ).

Definition 2.11. [3] A member η ∈ R∗(I ) is said to be an interior point if ∃r > 0 such
that

S(η, r) = {δ ∈ R∗(I ) : η � δ ≺ r̄} ⊂ E∗(I ).

Set of all interior points of R∗(I ) is called interior of R∗(I ).
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Definition 2.12. [3] A subset of F of E∗(I ) is said to be fuzzy closed if for any sequence
{ηn} such that lim

n→∞ ηn = η implies η ∈ F.

Definition 2.13. [3] A subset P of E∗(I ) is called a fuzzy cone if

(i) P is fuzzy closed, nonempty and P �= {0̄};
(ii) a, b ∈ R, a, b ≥ 0, η, δ ∈ P ⇒ aη ⊕ bδ ∈ P ;

Note 2.14. If η ∈ P then �η ∈ P ⇒ η = 0̄. For, suppose [η]α = [η1
α , η2

α], α ∈ (0, 1].
Since η ∈ P ⊂ E∗(I ), we have η1

α, η2
α ≥ 0 ∀α ∈ (0, 1]. Now [�η]α = [−η2

α , −η1
α], α ∈

(0, 1]. If η �= 0̄, then η1
α, η2

α > 0 ∀α ∈ (0, 1]. i.e. −η2
α ≤ − η1

α < 0 ∀α ∈ (0, 1]. This
implies that �η does not belong to P. Hence η = 0̄.

Given a fuzzy cone P ⊂ E∗(I ), define a partial ordering ≤ with respect to P by η ≤ δ

iff δ � η ∈ P and η < δ indicates that η ≤ δ but η �= δ while η << δ will stand for
δ � η ∈IntP where IntP denotes the interior of P.

The fuzzy cone P is called normal if there is a number K > 0 such that for all
η, δ ∈ E∗(I ), with 0̄ ≤ η ≤ δ implies η 
 Kδ. The least positive number satisfying
above is called the normal constant of P. The fuzzy cone P is called regular if every
increasing sequence which is bounded from above is convergent. That is if {ηn} is a
sequence such that η1 ≤ η2 ≤ · · · ≤ ηn ≤ · · · ≤ η for some η ∈ E∗(I ), then there is
δ ∈ E∗(I ) such that ηn → δ as n → ∞.

Equivalently, the fuzzy cone P is regular if every decreasing sequence which is
bounded below is convergent. It is clear that a regular fuzzy cone is a normal fuzzy cone.

In the following we always assume that E is a fuzzy real Banach space, P is a fuzzy
cone in E with IntP �= φ and ≤ is a partial ordering with respect to P.

Definition 2.15. [3] Let X be a nonempty set. Suppose the mapping d : X×X → E∗(I )
satisfies

(Fd1) 0̄ ≤ d(x, y) ∀x, y ∈ X and d(x, y) = 0̄ iff x = y;

(Fd2) d(x, y) = d(y, x) ∀x, y ∈ X;

(Fd3) d(x, y) ≤ d(x, z) ⊕ d(z, y) ∀x, y, z ∈ X.

Then d is called a fuzzy cone metric and (X, d) is called a fuzzy cone metric space.

Definition 2.16. [3] Let (X, d) be a fuzzy cone metric space. Let{xn} be a sequence in
X and x ∈ X. If for every c ∈ E with 0̄ << ||c|| there is a positive integer N such that
for all n > N , d(xn, x) << ||c||, then {xn} is said to be convergent and converges to x

and x is called the limit of {xn}. We denote it by lim
n→∞ xn = x.
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Proposition 2.17. [13] Let {[aα , bα], α ∈ (0, 1]} be a family of nested bounded closed
intervals. Let η : R → [0, 1] be a function defined by

η(t) =
∨

{α ∈ (0, 1] : t ∈ [aα , bα]}.
Then η is a fuzzy real number.

3. Main Results

Definition 3.1. For F ⊂ E we define fuzzy diameter of F is the fuzzy real number δ(F )
as

δ(F )(t) =
∨

{α ∈ (0, 1) : t ∈ [
∨

x∈F

||x||1α ,
∨

x∈F

||x||2α]}.

Definition 3.2. Let (X , d) be a fuzzy cone metric space and let g, f : X → X. Then g

is called fuzzy f -quasicontraction, if for some constant λ ∈ (0, 1) and for every x, y ∈ X

there exists

u ∈ C(f ; x, y) ≡ {d(f x, fy), d(f x, gx), d(f x, gy), d(fy, gy), d(fy, gx)}
such that d(gx, gy) ≤ λu (2.2.1).

Lemma 3.3. Let (X , d) be a fuzzy cone metric space and P be a normal fuzzy cone
with normal constant K. Let g, f : X → X, g commutes with f and g(X) ⊂ f (X) and
suppose g is fuzzy f -quasicontraction.

Let x0 ∈ X and x1 ∈ X be such that g(x0) = f (x1). Having defined x1 ∈ X, let
xn+1 ∈ X be such that g(xn) = f (xn+1) = yn.

Now for n ∈ N we set,

O(x0, n) = {y0, y1, y2, . . . , yn}
and

O(x0 , ∞) = {y0, y1, y2, . . . }.
Then there exists n0 ∈ N such that the following hold:

(i) If i, j , n ∈ N , n > n0 and n0 < i, j ≥ n then d(yi , yj ) ≺ δ(O(x0; n)).

(ii) If n ∈ N and n > n0 then

δr
α(O(x0; n)) = max{dr

α(y0, yk), dr
α(yi , yj ) : 1 ≤ k ≤ n, 1 ≤ i, j ≤ r0}, α ∈ (0, 1)

and r = 1, 2.

(iii) If n ∈ N and n > n0 then

δr
α(O(x0; n)) ≤

{
k

1 − k2λn0
dr

α(y0, yn0+1), λkδr
α(O(x0; n0)), dr

α(y0, yl) : 1 ≤ l ≤ n0

}
,

α ∈ (0, 1) and r = 1, 2.
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(iv) If n ∈ N and n > n0 then

δr
α(O(x0; ∞)) ≤

{
k

1 − k2λn0
dr

α(y0, yn0+1), λkδr
α(O(x0; n0)), dr

α(y0, yl) : 1 ≤ l ≤ n0

}
,

α ∈ (0, 1) and r = 1, 2.

(v) For n ∈ N and n ≥ n0 + 1 we have

d(yn , yn−1) 
 Kλn0δ(O(x0; ∞)).

(vi) Sequence {yn} is Cauchy and for m > n > n0 + 1 we have

d(yn , ym) 
 K
λn

1 − λ
δ(O(x0; ∞)).

Proof. Suppose that n0 ∈ N is such that max{λn0K , λn0K2} < 1.

(i) Suppose that i, j , n ∈ N , n > n0 and n0 < i, j ≤ n. There exists

η1 ∈ {d(gxi−1, gxj−1), d(gxi−1, gxi), d(gxi−1, gxj ), d(gxj−1, gxj ),

d(gxj−1, gxi)} ⊂ O(x0; n)

such that d(yi , yj ) = d(gxi , gxj ) ≤ λη1. Now, there exists η2 ∈ O(x0; n) such
that η1 ≤ λη2. Hence d(yi , yj ) ≤ λ2η2. Thus after n0 steps we get,

d(yi , yj ) ≤ λn0ηn0

for some ηn0 ∈ O(x0; n). Since P is normal, thus

d(yi , yj ) 
 Kλn0ηn0 ≺ δ((x0; n)) (2.3.1)

(ii) From (i) we get,
dr

α(yi , yj ) < δr
α(O(x0; n))

for r = 1, 2 and α ∈ (0, 1). Thus it follows that, for n ∈ N and n > n0;

δr
α(O(x0; n)) = max{dr

α(y0, yk), dr
α(yi , yj ) : 1 ≤ k ≤ n, 1 ≤ i, j ≤ n0}, α ∈ (0, 1)

and r = 1, 2.

(iii) There are three cases may arise.

Case I. If
δ1
α(O(x0; n)) = d1

α(y0, yk(α))
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for some k(α) ∈ N such that 1 ≤ k(α) ≤ n0 then

δ1
α(O(x0; n)) ≤ max{d1

α(y0, yl) : 1 ≤ l ≤ n0}.

Similarly δ2
α(O(x0; n)) ≤ max{d2

α(y0, yl) : 1 ≤ l ≤ n0}.

Case II. If
δ1
α(O(x0; n)) = d1

α(y0, yk(α))

for some k(α) ∈ N such that n0 < k(α) ≤ n then

d(y0, yk) ≤ d(y0, yn0+1) ⊕ d(yn0+1, yk).

Since P is normal we have,

d(y0, yk) 
 K{d(y0, yn0+1) ⊕ d(yn0+1, yk)}.
i.e.

δr
α(y0, yk) ≤ K{dr

α(y0, yn0+1) + dr
α(yn0+1, yk)} α ∈ (0, 1), r = 1, 2.

By using (ii), it follows that,

δr
α(O(x0; n)) ≤ Kdr

α(y0, yn0+1) + λn0K2δr
α(O(x0; n))

i.e.

δr
α(O(x0; n)) =≤ K

1 − λn0K2
dr

α(y0, yn0+1)

for r = 1, 2.

Case III. If
δr
α(O(x0; n)) = dr

α(yi , yj )

for some i, j ∈ N with 1 ≤ i, j ≤ n0 then

dr
α(yi , yj ) ≤ λη1

α

for some η ∈ {d(a, b) : a, b ∈ O(x0, n0)}. Hence in this case

δr
α(O(x0; n)) ≤ λKδr

α(O(x0; n0)), r = 1, 2, α ∈ (0, 1).

Thus (iii) holds.

(iv) From (iii), (iv) follows.
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(v) For n ≥ n0 + 1 we get,
d(yn, yn−1) ≤ ληn,n−1

for some

ηn,n−1 ∈ {d(yn+1, yn), d(yn+1, yn−1), d(yn, yn−1), 0̄}.
Again

d(yn+1, yn) ≤ ληn,n+1

for some

ηn,n+1 ∈ {d(yn+2, yn+1), d(yn+2, yn), d(yn+1, yn), 0̄}.
Further, d(yn+1, yn−1) ≤ ληn−1,n+1 where

ηn−1,n+1 ∈ {d(yn+2, yn), d(yn+2, yn+1), d(yn+2, yn−1), d(yn, yn−1), d(yn, yn−1)}.
So,

d(yn, yn−1) ≤ λ2η
(2)
n,n−1

where

η
(2)
n,n−1 ∈ {d(yn, yn−1), d(yn+1, yn), d(yn+1, yn−1), d(yn+2, yn+1),

d(yn+2, yn), d(yn+2, yn−1), 0̄}.
We continue in similar way and after n0 steps we have,

d(yn, yn−1) ≤ λn0η
n0
n,n−1 (2.3.2)

where

η
(n0)
n,n−1 ∈

n0⋃

j=0

j⋃

i=0

{d(yn+j , dn−1+i)}.

Hence
d(yn, yn−1) 
 Kλn0δ(O(x0; ∞)).

(v) By (2.3.2), for m > n > n0+1 we have,

d(yn, ym) ≤ d(yn, yn+1)⊕d(yn+1, yn+2)⊕· · ·⊕d(ym−1, ym) ≤
m−n−1∑

k=0

λn+kη
(n+k)
n+k+1,n+k.

Since P is normal, we have,

d(yn, ym) 
 Kλn

m−n−1∑

k=0

λkη
(n+k)
n+k+1,n+k 
 K

λn

1 − λ
δ(O(x0; ∞)).

This implies that d(yn, ym) → 0̄ as m, n → ∞. So {yn} is a Cauchy sequence.
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Theorem 3.4. Let (X , d) be a complete fuzzy cone metric space and P be a normal
fuzzy cone. Let f : X → X, f 2 be continuous, g : f (X) → X be such that
g(f (X)) ⊂ f 2(X) and f (g(x)) = g(f (x)) whenever both sides are defined. Further
suppose that there exists λ ∈ (0, 1) such that (2.2.1) holds for every x, y ∈ f (X). Then
f and g have a common fixed point.

Proof. Suppose x0 ∈ f (X). We define a sequence {xn} in f (X) such that

f (xn+1) = g(xn) = yn.

Let
fyn = fgxn = gf xn = gyn−1 = zn.

By Lemma 2.3, for n < m we have

d(zn , zm) 
 K
λn

1 − λ
δ(O(x0; ∞)).

This implies that {zn} is a Cauchy sequence in X and since X is complete ∃z ∈ X such
that zn → z as n → ∞. By using (2.2.1), it follows that

d(f 2zn, gf zn) = d(gf zn−1 , gf zn) ≤ λη1

for some

η1 ∈ {d(gf zn−2 , gf zn−1), d(gf zn−1 , gf zn), d(gf zn−2 , gf zn), 0̄}.
As in the proof of Lemma 2.3, for each n ∈ N ,

d(f 2zn , gf zn) = d(gf zn−1 , gf zn) ≤ λn−2ηn−2

for some
ηn−2 ∈ {d(gf zi , gf zj ) : 0 ≤ i ≤ n − 1, 1 ≤ j ≤ n}.

Hence d(f 2zn , gf zn) → 0̄ as n → ∞ and thus f 2z = gf z. Now from (2.2.1) we get,

d(g(gf z) , gf z) ≤ λu

where x = gf z and y = f z. If u = d(f x , fy) then we have,

d(g(gf z) , gf z) ≤ λd(f (gf z) , f (f z))

= λd(g(f 2z) , f 2z) (since g(f (x)) = f (g(x)))

= λd(g(gf z) , gf z)

⇒ (λ − 1)d(g(gf z) , gf z) ∈ P

⇒ d(g(gf z) , gf z) = 0̄ (since λ − 1 < 0)

⇒ g(gf z) = gf z.
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Thus gf z is a fixed point of g. Also, f (gf z) = g(f 2z) = g(gf z) = gf z. Hence gf z is
a common fixed point of f and g. �

The following example justifies the Theorem 2.4.

Example 3.5. Let us consider the Banach space (E , || ||′) where E = R and ||x||′ =
|x| ∀x ∈ E. Define || || : E → E∗(I ) by

||x||(t) =
{

1 if t > ||x||′
0 if t ≤ ||x||′

Then [||x||]α = [||x||′ , ||x||′] ∀α ∈ (0, 1]. It can be verified that, (i) ||x|| = 0̄ iff x = 0
(ii) ||rx|| = |r|||x|| (iii) ||x + y|| 
 ||x|| ⊕ ||y||. Thus (E, || ||) is a complete fuzzy
normed linear space. Define P = {η ∈ E∗(I ) : η � 0̄}. Then P is a fuzzy cone as
well as normal fuzzy cone with normal constant 1. Now choose the ordering ≤ as 
 and
define d : E × E → E∗(I ) by d(x, y) = ||x − y|| ∀x, y ∈ E. Then it is easy to verify
that d satisfies the conditions (Fd1) to (Fd3). Hence (E , d) is a fuzzy cone metric space.
Define f , g : E → E by

f (x) =

⎧
⎪⎨

⎪⎩

1 if x ∈ ( − ∞, −1]

x if x ∈ ( − 1, 1)

−1 if x ∈ [1, ∞)

and

g(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + x

2
if x ∈ ( − 1, 0]

1 − x

2
if x ∈ (0, 1)

0 if x ∈ ( − ∞, −1] ∪ [1, ∞)

Then

f 2(x) =

⎧
⎪⎨

⎪⎩

1 if x ∈ [1, ∞)

x if x ∈ ( − 1, 1)

−1 if x ∈ ( − ∞, −1]

Thus f 2 is continuous. Also f (g(x)) = g(f (x)) ∀x ∈ E and gf (X) ⊂ f 2(X). Now we
show that g is f -quasicontraction. For, take x, y ∈ (0, 1) then

d(f x, fy) = d(x, y) = |x − y|, d(f x, gx) = d

(
x,

1 − x

2

)
=

∣∣∣∣
3x − 1

2

∣∣∣∣ ,

d(f x, gy) = d

(
x,

1 − y

2

)
=

∣∣∣∣
2x + y − 1

2

∣∣∣∣ , d(fy, gy) = d

(
y,

1 − y

2

)
=

∣∣∣∣
3y − 1

2

∣∣∣∣ ,

d(fy, gx) = d

(
y,

1 − x

2

)
=

∣∣∣∣
2y + x − 1

2

∣∣∣∣ , d(gx, gy) = d

(
1 − x

2
,

1 − y

2

)
=

∣∣∣∣
x − y

2

∣∣∣∣ .
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So

d(gx, gy) =
∣∣∣∣
x − y

2

∣∣∣∣ ≤ 1.|x − y| = 1.d(f x, fy).

Thus all the hypothesis of Theorem 2.4 hold. Now

f (x) = g(x) = x

⇒ 1 − x

2
= x

⇒ x = 1

3
.

Thus
1

3
is the common fixed point of f and g.
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